留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于区域校正的大面阵红外探测器非均匀性校正方法

张明杰 李岩 马文坡 刘紫莹

张明杰, 李岩, 马文坡, 刘紫莹. 基于区域校正的大面阵红外探测器非均匀性校正方法[J]. 红外技术, 2021, 43(4): 324-333.
引用本文: 张明杰, 李岩, 马文坡, 刘紫莹. 基于区域校正的大面阵红外探测器非均匀性校正方法[J]. 红外技术, 2021, 43(4): 324-333.
ZHANG Mingjie, LI Yan, MA Wenpo, LIU Ziying. Non-uniformity Correction for Large Format Array Infrared Detectors Based on Regional Correction[J]. Infrared Technology , 2021, 43(4): 324-333.
Citation: ZHANG Mingjie, LI Yan, MA Wenpo, LIU Ziying. Non-uniformity Correction for Large Format Array Infrared Detectors Based on Regional Correction[J]. Infrared Technology , 2021, 43(4): 324-333.

基于区域校正的大面阵红外探测器非均匀性校正方法

详细信息
    作者简介:

    张明杰(1995-),男,硕士研究生,主要从事红外图像处理技术。E-mail:2361636567@qq.com

    通讯作者:

    马文坡(1967-),男,博士,博士生导师,研究员,主要从事航天光学遥感技术

  • 中图分类号: TN215

Non-uniformity Correction for Large Format Array Infrared Detectors Based on Regional Correction

  • 摘要: 通过分析某大面阵红外探测器的响应特性,发现了由于相机自身特性引发的不同区域的响应非线性问题。传统的两点校正法或非线性曲线拟合办法对该大面阵探测器校正后,校正残差和目视效果都比较差。本文根据探测器的非线性响应特性,将整个面阵分成了8个区域分别进行非线性拟合校正,然后校正各个区域的偏置系数,最后利用改进的BP神经网络非均匀性校正算法处理区域划分引发的不均匀问题。校正后的各个黑体温度图像的残余非均匀性在千分之一量级,空间噪声也已经十分接近或者小于时间噪声;局部残余非均匀性达到0.002以下,空间噪声明显小于时间噪声。
  • 图  1  校正前黑体图像和直方图

    Figure  1.  Blackbody image and histogram before correction

    图  2  两点校正后黑体图像和直方图

    Figure  2.  Blackbody image and histogram after two-point correction

    图  3  二次曲线拟合算法校正后的黑体图像和直方图

    Figure  3.  Blackbody image and histogram after quadratic curve fitting correction

    图  4  分区域校正算法流程图

    Figure  4.  Flow chart of regional correction algorithm

    图  5  不同通道两列像元二次拟合响应曲线分析

    Figure  5.  Quadratic fitting response curves analysis of two columns of pixels in different channels

    图  6  不同通道两列像元二次项拟合系数差异

    Figure  6.  Difference of quadratic fitting coefficients of two columns of pixels in different channels

    图  7  某一行像元的二次项拟合系数

    Figure  7.  Quadratic fitting coefficient of a row of pixels

    图  8  盲元检测算法程序流程图

    Figure  8.  Flow chart of blind element detection algorithm program

    图  9  死像元剔除前后响应特性比较

    Figure  9.  Comparison of response characteristics before and after dead pixels are removed

    图  10  过热像元剔除前后的稳定性比较

    Figure  10.  Comparison of stability before and after overheated pixels are removed

    图  11  分区域校正后黑体图像和直方图

    Figure  11.  Black body image and histogram after regional correction

    图  12  含有特定周期性噪声的理想图像

    Figure  12.  Ideal image with particular periodic noise

    图  13  改进神经网络算法的期望图像

    Figure  13.  Expected image of improved neural network algorithm

    图  14  校正后不同通道两列像元二次拟合响应曲线分析

    Figure  14.  Quadratic fitting response curve analysis of two columns of pixels in different channels after correction

    图  15  本文方法校正后黑体图像和直方图

    Figure  15.  Black body image and histogram after correction by this paper

    表  1  不同算法校正前后图像质量比较

    Table  1.   Comparison of image quality before and after correction with different algorithms

    Temperature/K Temporal noise(DN value) Two-point correction algorithm Quadratic curve fitting correction algorithm Correction algorithm in this paper
    Spatial noise(DN value) Residual non-uniformity Spatial noise(DN value) Residual non-uniformity Spatial noise(DN value) Residual non-uniformity
    290.7 12.533 38.64 1.74% 27.13 1.22% 17.07 0.80%
    304.1 12.660 21.74 0.80% 20.45 0.75% 11.83 0.45%
    313.3 12.773 - - - - - -
    320.4 12.907 19.86 0.51% 16.91 0.43% 9.48 0.25%
    335.5 13.266 72.15 1.25% 32.22 0.56% 11.46 0.20%
    346.1 13.623 120.69 1.54% - - - -
    354.5 13.943 168.18 1.68% 82.13 0.82% 20.14 0.20%
    359.2 14.038 92.15 0.78% 159.9 1.36% 24.40 0.23%
    363.5 13.600 - - - - - -
    下载: 导出CSV

    表  2  不同算法校正前后局部图像质量比较(320.4 K)

    Table  2.   Comparison of local image quality before and after correction with different algorithms(320.4 K)

    Size of region Temporal noise(DN value) Two-point correction algorithm Quadratic curve fitting correction algorithm Correction algorithm in this paper
    Spatial noise(DN value) Residual non-uniformity Spatial noise(DN value) Residual non-uniformity Spatial noise(DN value) Residual non-uniformity
    11×11 12.92 5.52 0.14% 8.76 0.22% 4.83 0.13%
    51×51 12.13 11.26 0.29% 9.76 0.25% 6.29 0.16%
    101×101 12.19 12.73 0.32% 10.02 0.25% 7.09 0.18%
    下载: 导出CSV
  • [1] Rogalski A. Next decade in infrared detectors[C]//Electro-Optical and Infrared Systems: Technology and Applications XIV, 2017: 104330L (https://doi.org/10.1117/12.2300779).
    [2] 任建乐, 陈钱, 钱惟贤, 等. 基于多帧配准的红外焦平面阵列非均匀性自适应校正[J]. 红外与毫米波学报, 2014, 33(2): 122-128. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201402002.htm

    REN Jianle, CHEN Qian, QIAN Weixian, et al. Multiframe registration based adaptive nonuniformity correction algorithm for infrared focal plane arrays[J]. Journal of Infrard and Millimeter Waves, 2014, 33(2): 122-128. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201402002.htm
    [3] 钱润达, 赵东, 周慧鑫, 等. 基于加权引导滤波与时域高通滤波的非均匀性校正算法[J]. 红外与激光工程, 2018, 42(12) : 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201812022.htm

    QIAN Runda, ZHAO Dong, ZHOU Huixin, et al. Non-uniformity correction algorithm based on weighted guided filter and temporal high-pass filter[J]. Infrared and Laser Engineering, 2018, 42(12) : 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201812022.htm
    [4] 陈钱, 隋修宝. 红外图像处理理论与技术[M]. 北京: 电子工业出版社, 2018.

    CHEN Qian, SUI Xiubao. Infrared Image Processing Theory and Technology[M]. Beijing: Publishing House of Electronics Industry, 2018.
    [5] 吕游, 何昕, 魏仲慧. 红外焦平面阵列非均匀性校正算法研究[J]. 计算机技术与发展, 2015, 25(2): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ201502001.htm

    LV You, HE Xin, WEI Zhonghui. Research on non-uniformity correction algorithms for IRFPA[J]. Computer Tecnology and Development, 2015, 25(2): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ201502001.htm
    [6] 李成立, 吕俊伟, 王佩飞, 等. 红外探测器盲元检测及评价[J]. 激光与红外, 2018, 48(2): 209-214. doi:  10.3969/j.issn.1001-5078.2018.02.014

    LI Chengli, LV Junwei, WANG Peifei, et al. Blind pixel detection and evaluation for infrared detector[J]. Laser and Infrared, 2018, 48(2): 209-214. doi:  10.3969/j.issn.1001-5078.2018.02.014
    [7] 国家质量监督检验检疫总局, 国家标准化管理委员会. GB/T17444 -2013红外焦平面阵列参数测试方法[S]. 中国标准出版社, 2014.

    General Administration of Quality Supervision, Inspection and Quarantine of China, Standardization Administration. GB/T17444-2013 Measuring methods for parameters of infrared focalplane arrays[S]. China Standards Press, 2014.
    [8] Dean A Scribner, Kenneth A Sarkady, Melvin R Kruer, et al. Adaptive nonuniformity correction for IR focal-plane arrays using neural networks[C]// Proc. of Infrared Sensors: Detectors, Electronics, and Signal Processing, 1991, 1541: 100-109.
    [9] 张丽莎, 刘兆军. 基于90°旋转定标和场景校正相结合的非均匀性校正技术[J]. 航天返回与遥感, 2017, 38(1): 78-87. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201701011.htm

    ZHANG Lisha, LIU Zhaojun. High performance NUC by side-slither combined with scened-based correction[J]. Spacecraft Covery And Remote Sensing, 2017, 38(1): 78-87. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201701011.htm
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  391
  • HTML全文浏览量:  179
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-14
  • 修回日期:  2021-04-06
  • 刊出日期:  2021-04-20

目录

    /

    返回文章
    返回