留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锁相红外检测技术对耐候涂层厚度的评估

李波 陈俊卫 刘卓毅 白洁 樊磊 张聪 郭举富

李波, 陈俊卫, 刘卓毅, 白洁, 樊磊, 张聪, 郭举富. 锁相红外检测技术对耐候涂层厚度的评估[J]. 红外技术, 2022, 44(3): 303-309.
引用本文: 李波, 陈俊卫, 刘卓毅, 白洁, 樊磊, 张聪, 郭举富. 锁相红外检测技术对耐候涂层厚度的评估[J]. 红外技术, 2022, 44(3): 303-309.
LI Bo, CHEN Junwei, LIU Zhuoyi, BAI Jie, FAN Lei, ZHANG Cong, GUO Jufu. Thickness Evaluation of Weather Resistant Coatings Based on Lock-in Thermography[J]. Infrared Technology , 2022, 44(3): 303-309.
Citation: LI Bo, CHEN Junwei, LIU Zhuoyi, BAI Jie, FAN Lei, ZHANG Cong, GUO Jufu. Thickness Evaluation of Weather Resistant Coatings Based on Lock-in Thermography[J]. Infrared Technology , 2022, 44(3): 303-309.

锁相红外检测技术对耐候涂层厚度的评估

基金项目: 南方电网重大科技专项“高腐蚀环境下电网输变电设备腐蚀机理及防腐延寿关键技术研究与应用示范”资助项目
详细信息
    作者简介:

    李波(1970-),学士,高级工程师,主要研究方向为电网设备无损检测、电力设备腐蚀控制,电气与电工材料。E-mail: 1203410323@qq.com

  • 中图分类号: TG115.28

Thickness Evaluation of Weather Resistant Coatings Based on Lock-in Thermography

  • 摘要: 输变电设施的金属构件容易受温度、湿气等气候因素影响而发生侵蚀,因此通常需要在其表面喷涂耐候保护涂层。为了确保涂层厚度符合要求,需要对其进行检测。针对现有检测方法的不足,本文采用锁相红外无损检测技术对耐候涂层厚度进行检测与评估。首先采用制作的标准涂层试件对该方法测厚的原理与重复性进行验证,验证了该技术对涂层厚度的评估的可靠性与稳定性;其后采用厚度均匀过渡的耐候涂层试片进行测试,采用试片上定标点的相位值拟合出定标曲线,并利用该曲线测量出试片上验证点的厚度信息。实验结果表明,测量厚度与真实厚度误差在±5%以内,采用相位图像可以对耐候涂层厚度与均匀度进行有效测量与评估。
  • 图  1  锁相红外无损检测技术原理图

    Figure  1.  Schematic diagram of Lock-in thermographic technology

    图  2  标注涂层试件可见光图像

    Figure  2.  Visible image of coating specimen

    图  3  标准涂层试件检测结果

    Figure  3.  Test results of standard coating specimen

    图  4  标准涂层试件厚度与相位关系

    Figure  4.  Relationship between thickness and phase of standard coating specimen

    图  5  耐候涂层可见光图像

    Figure  5.  Visible image of weatherability coating

    图  6  耐候涂层第1周期不同时刻原始红外图像

    Figure  6.  Original infrared image of weather resistant coating at different times in the first cycle

    图  7  耐候涂层检测结果图像

    Figure  7.  Test results of weather resistant coating

    图  8  耐候涂层取点/线示意图

    Figure  8.  Point/line diagram of weather resistant coating

    图  9  耐候涂层不同点温升-时间曲线

    Figure  9.  Temperature curves of weathering resistant coating at different points

    图  10  耐候涂层相位图空间曲线

    Figure  10.  Phase diagram space curve of weathering resistant coating

    图  11  耐候涂层不同频率下振幅图和相位图

    Figure  11.  Amplitude and phase images of weather resistant coating at different modulation frequencies

    表  1  验证点计算厚度与真实厚度

    Table  1.   Calculated thicknesses and actual thicknesses at verification points

    Verification point Phase value/° Calculated thickness/μm True
    thickness/μm
    Error/%
    M -77.0 113.0 108 4.8
    N -67.4 140.5 145 -3.1
    P -60.9 172.1 164 4.9
    Q -57.6 191.7 185 3.6
    下载: 导出CSV
  • [1] 陈高汝, 陈展超, 钟文贵, 等. 电网金属部件反腐保护层的便携式电镀设备设计及技术应用[J]. 科技与创新, 2020(1): 157-158. https://www.cnki.com.cn/Article/CJFDTOTAL-KJYX202001065.htm

    CHEN Gaonu, CHEN Zhanchao, ZHONG Wengui, et al. Design and application of portable electroplating equipment for anti-corruption protective layer of power grid metal parts[J]. Science and Technology & Innovation, 2020(1): 157-158. https://www.cnki.com.cn/Article/CJFDTOTAL-KJYX202001065.htm
    [2] 王平, 孙心利, 马东伟, 等. 输变电设备大气腐蚀情况调查与分析[J]. 腐蚀科学与防护技术, 2012, 24(6): 525-526. https://www.cnki.com.cn/Article/CJFDTOTAL-FSFJ201206023.htm

    WANG Ping, SUN Xinli, MA Dongwei, et al. Investigation and analysis on atmospheric corrosion of power transmission and transformation equipment[J]. Corrosion Science and Protection Technology, 2012, 24(6): 525-526. https://www.cnki.com.cn/Article/CJFDTOTAL-FSFJ201206023.htm
    [3] 陈云, 强春媚, 王国刚, 等. 输电铁塔的腐蚀与防护[J]. 电力建设, 2010, 31(8): 55-58. doi:  10.3969/j.issn.1000-7229.2010.08.013

    CHEN Yun, QIANG Chunmei, WANG Guogang, et al. Corrosion and protection of transmission towers[J]. Electric Power Construction, 2010, 31(8): 55-58. doi:  10.3969/j.issn.1000-7229.2010.08.013
    [4] 李文翰, 尹学涛, 周学杰, 等. 电网输变电设备钢结构和镀锌构件的大气腐蚀与防护措施[J]. 材料保护, 2018, 51(10): 121-125. https://www.cnki.com.cn/Article/CJFDTOTAL-CLBH201810027.htm

    LI Wenhan, YIN Xuetao, ZHOU Xuejie, et al. Summary on atmospheric and protection measure of steel componets and galvanized componets for transmission and distribution projects[J]. Material Protection, 2018, 51(10): 121-125. https://www.cnki.com.cn/Article/CJFDTOTAL-CLBH201810027.htm
    [5] 刘波, 李艳红, 冯立春, 等. 锁相红外热成像技术在无损检测领域的应用[J]. 无损探伤, 2006, 30(3): 12-15. doi:  10.3969/j.issn.1671-4423.2006.03.004

    LIU Bo, LI Yahong, FENG Lichun, et al. Application of phase infrared thermal iimaging technology in nondestructive testing[J]. Nondestructive Test, 2006, 30(3): 12-15. doi:  10.3969/j.issn.1671-4423.2006.03.004
    [6] 李根, 赵翰学, 范瑾, 等. 锁相红外热像检测缺陷的定量方法[J]. 无损检测, 2017, 39(6): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201706001.htm

    LI Gen, ZHAO Hanxue, FAN Jin, et al. A defect quantification method by lock-in thermography[J]. Nondestructive Testing, 2017, 39(6): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201706001.htm
    [7] 汪子君, 刘俊岩, 戴景民, 等. 锁相红外检测中相位检测方法[J]. 无损检测, 2008, 30(7): 418-421. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC200807009.htm

    WANG Zijun, LIU Junyan, DAI Jingmin, et al. Study of phase detection in lock-in thermography nondestructive testing[J]. Nondestructive Testing, 2008, 30(7): 418-421. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC200807009.htm
    [8] Bai W, Wong B S. Evaluation of defects in composite plate under connective environments using lock-in thermography[J]. Measurement Science and Technology, 2001, 12(2): 142-150. doi:  10.1088/0957-0233/12/2/303
    [9] 赵延广, 郭杳林, 任明法. 基于锁相红外热成像理论的复合材料网格加筋结构的无损检测[J]. 复合材料学报, 2011, 28(1): 200-205. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201101035.htm

    ZHAO Tingguang, GUO Xinlin, REN Mingfa. Lock-in thermography method for the NDT of composite grid stiffened structures[J]. Acta Mater Compos Sin, 2011, 28(1): 200-205. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201101035.htm
    [10] 刘俊岩, 戴景民, 王扬. 红外锁相法热波检测技术及缺陷深度测量[J]. 光学精密工程, 2010, 18(1): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201001007.htm

    LIU Junyan, DAI Jingmin, WANG Yang. Thermal wave detection and defect depth measurement based on lock-in thermography[J]. Optics and Precision Engineering, 2010, 18(1): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201001007.htm
    [11] 江海军, 盛涛, 陈力, 等. 碳纤维蜂窝结构的锁相红外自动化检测系统研制[J]. 无损检测, 2020, 42(6): 54-57. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC202006014.htm

    JIANG Haijun, SHENG Tao, CHEN Li, et al. Development of lock-in infrared automatic detection system for carbon fiber honeycomb structure[J]. Nondestructive Testing, 2020, 42(6): 54-57. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC202006014.htm
    [12] 陈林, 杨立, 范春利, 等. 红外锁相无损检测及其数值模拟[J]. 红外技术, 2013, 35(2): 119-122. http://hwjs.nvir.cn/article/id/hwjs201302013

    CHEN Lin, YANG Li, FAN Chunli, et al. Numerical simulation of lock-in thermography for infrared nondestructive testing[J]. Infrared Technology, 2013, 35(2): 119-122. http://hwjs.nvir.cn/article/id/hwjs201302013
    [13] 张金玉, 马永超. 基于红外锁相法的涂层脱粘缺陷检测与识别[J]. 红外技术, 2016, 38(10): 894-898. doi:  10.11846/j.issn.1001_8891.201610015

    ZHANG Jinyu, MA Yongchao. Detection and recognition of the debonding defect of coating based on lock-in thermography[J]. Infrared Technology, 2016, 38(10): 894-898. doi:  10.11846/j.issn.1001_8891.201610015
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  124
  • HTML全文浏览量:  30
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-30
  • 修回日期:  2021-08-10
  • 刊出日期:  2022-03-20

目录

    /

    返回文章
    返回