留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

As注入长波碲镉汞红外探测器工艺研究

熊伯俊 李立华 杨超伟 李雄军 赵鹏 万志远

熊伯俊, 李立华, 杨超伟, 李雄军, 赵鹏, 万志远. As注入长波碲镉汞红外探测器工艺研究[J]. 红外技术, 2022, 44(2): 129-133.
引用本文: 熊伯俊, 李立华, 杨超伟, 李雄军, 赵鹏, 万志远. As注入长波碲镉汞红外探测器工艺研究[J]. 红外技术, 2022, 44(2): 129-133.
XIONG Bojun, LI Lihua, YANG Chaowei, LI Xiongjun, ZHAO Peng, WAN Zhiyuan. As Ion Implantation Technology for LWIR HgCdTe Infrared Detector[J]. Infrared Technology , 2022, 44(2): 129-133.
Citation: XIONG Bojun, LI Lihua, YANG Chaowei, LI Xiongjun, ZHAO Peng, WAN Zhiyuan. As Ion Implantation Technology for LWIR HgCdTe Infrared Detector[J]. Infrared Technology , 2022, 44(2): 129-133.

As注入长波碲镉汞红外探测器工艺研究

详细信息
    作者简介:

    熊伯俊(1997-),男,云南红河人,硕士研究生,主要研究领域为红外探测器器件技术研究。E-mail:2605723090@qq.com

    通讯作者:

    李立华(1974-),男,云南大理人,研究员级高工,硕士生导师,主要从事红外探测器总体技术及芯片制备研究工作。E-mail:llh_email@163.com

  • 中图分类号: TN215

As Ion Implantation Technology for LWIR HgCdTe Infrared Detector

  • 摘要: p-on-n结构的碲镉汞红外探测器具有长的少子寿命、低暗电流、高R0A值等优点,是高温器件、长波甚长波器件发展的重要器件结构。而国内还鲜有砷注入掺杂p-on-n长波HgCdTe探测器的相关报道,为了满足军事、航天等领域对高性能长波探测器迫切的应用需求,针对As离子注入的长波p-on-n碲镉汞红外探测器退火工艺技术进行研究。采用二次离子质谱(SIMS)仪分析注入及退火后As离子浓度分布情况,使用半导体参数测试仪表征pn结的I-V特性。研究结果表明,在富汞0.5 h 430℃+20 h 240℃条件下,实现As激活,成功制备As注入长波15 μm 640×512的p-on-n碲镉汞红外焦平面器件,器件有效像元率大于99.7%。该研究对长波甚长波碲镉汞p-on-n焦平面器件的制备具有重要意义。
  • 图  1  样品1~5的SIMS测试结果

    Figure  1.  SIMS test results of samples 1-5

    图  2  样品6~10的SIMS测试结果

    Figure  2.  SIMS test results of samples 6~10

    图  3  LWIR碲镉汞p-on-n结I-V特性曲线

    Figure  3.  I-V characteristics for a LWIR HgCdTe p-on-n

    图  4  信号响应图

    Figure  4.  Signal response graph

    表  1  退火条件

    Table  1.   Annealing conditions

    Sample Energy/keV Dose/
    cm-2
    Annealing conditions
    Time/h Temperature/℃
    1 300 5E+14 0 0
    2 300 5E+14 0.5 360
    3 300 5E+14 1 360
    4 300 5E+14 2 360
    5 300 5E+14 5 360
    6 300 5E+14 1 380
    7 300 5E+14 0.5 400
    8 300 5E+14 1 400
    9 300 5E+14 4 400
    10 300 5E+14 0.5 430
    下载: 导出CSV

    表  2  样品1~10的测试数据

    Table  2.   Test data for samples 1-10

    Sample EOR/μm Peak depth/μm Peak concentration/cm-3
    1 0.4171 0.0962 3.71E+19
    2 0.4182 0.1011 3.6E+19
    3 0.4263 0.1050 3.39E+19
    4 0.4755 0.1059 3.34E+19
    5 0.4812 0.1095 3.27E+19
    6 0.4954 0.1134 2.73E+19
    7 0.5075 0.1074 3.77E+19
    8 0.5263 0.1249 3.02E+19
    9 0.5577 0.1280 1.87E+19
    10 0.8557 0.1314 8.64E+18
    下载: 导出CSV
  • [1] LEI W, Antoszewski J, Faraone L. Progress, challenges, and opportunities for HgCdTe infrared materials and detectors[J]. Applied Physics Reviews, 2015, 2(4): 041303. doi:  10.1063/1.4936577
    [2] Rogalski A, Martyniuk P, Kopytko M. Challenges of small-pixel infrared detectors: a review[J]. Reports on Progress in Physics, 2016, 79(4): 046501. doi:  10.1088/0034-4885/79/4/046501
    [3] Korotaev A G, Izhnin I I, Mynbaev K D, et al. Hall-effect studies of modificationof HgCdTe surface properties with ion implantation and thermal annealing[J]. Surface & Coatings Technology, 2020, 393: 125721.
    [4] Bubulac L O, Lo D S, Tennant W E, et al. p on n ion implanted junctions in liquid phase epitaxy HgCdTe layers on CdTe substrates[J]. Applied Physics Letters, 1987, 50(22): 1586-1588. doi:  10.1063/1.97788
    [5] Baier N, Cervera C, Gravrand O, et al. Latest developments in long-wavelength and very-long-wavelength infrared detection with p-on-n HgCdTe[J]. Journal of Electronic Materials, 2015, 44(9): 3144-3150. doi:  10.1007/s11664-015-3851-0
    [6] Izhnin I I, Fitsych O I, Świątek Z, et al. Effect of annealing on the structural properties of arsenic-implanted mercury cadmium telluride[J]. Opto-Electron Review, 2019, 27(1): 14-17. doi:  10.1016/j.opelre.2019.01.002
    [7] Robinson H G, Berding M A, Hamilton W J. Enhanced diffusion and interdiffusion in HgCdTe from Fermi-level effects[J]. Journal of Electronic Materials, 2000, 29(6): 657-663. doi:  10.1007/s11664-000-0201-6
    [8] 陈慧卿, 史春伟, 胡尚正, 等. 中波镉汞p-on-n高温工作技术研究[J]. 激光与红外, 2020, 50(4): 435-438. doi:  10.3969/j.issn.1001-5078.2020.04.009

    CHEN H Q, SHI C W, HU S Z, et al. Study on p-on-n technology of the MWIR HgCdTe for hot work[J]. Laser and Infrared, 2020, 50(4): 435-438. doi:  10.3969/j.issn.1001-5078.2020.04.009
    [9] Arias J M, Pasko J G, Zandian M, et al. MBE HgCdTe heterostructure p-on-n planar infrared photodiodes[J]. Journal of Electronic Materials, 1993, 22(8): 1049-1053. doi:  10.1007/BF02817523
    [10] Mollard L, Destefanis G, Baier N, et al. Planar p-on-n HgCdTe FPAs by arsenic ion implantation[J]. Journal of Electronic Materials, 2009, 38(8): 1805-1813. doi:  10.1007/s11664-009-0829-9
    [11] Schaake H F. Kinetics of activation of group V impurities in Hg1−xCdxTe alloys[J]. Journal of Applied Physics, 2000, 88(4): 1765-1770. doi:  10.1063/1.1302738
    [12] Berding M A, Sher A, van Schilfgaarde M, et al. Modeling of arsenic activation in HgCdTe[J]. Journal of Electronic Materials, 1998, 27(6): 605-609. doi:  10.1007/s11664-998-0023-5
    [13] Shaw D. An activation model for the As acceptor in HgCdTe[J]. Semiconductor Science Technology, 2008, 23(78): 085014.
    [14] Baier N, Mollard L, Rothman J, et al. Status of p-on-n HgCdTe technologies at DEFIR[C]//Proceedings of SPIE, The International Society for Optical Engineering, Infrared Technology and Applications XXXV, 2009, 7298: 729823.
    [15] Bubulac L O. Diffusion and activation of p-type species for p-on-n junction formation and novel characterization techniques for mercury cadmium telluride epilayers[D]. Los Angeles: University of California, 1991.
    [16] Ryssel H, Lang G, Biersack J P, et al. Ion implantation doping of Cd0.2Hg0.8Te for infrared detectors[J]. IEEE Transactions on Electron Devices, 1980, 27(1): 58-62. doi:  10.1109/T-ED.1980.19819
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  206
  • HTML全文浏览量:  49
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-31
  • 修回日期:  2021-10-11
  • 刊出日期:  2022-02-20

目录

    /

    返回文章
    返回