留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高空间分辨微通道板现状及发展

邱祥彪 杨晓明 孙建宁 王健 丛晓庆 金戈 曾进能 张正君 潘凯 陈晓倩

邱祥彪, 杨晓明, 孙建宁, 王健, 丛晓庆, 金戈, 曾进能, 张正君, 潘凯, 陈晓倩. 高空间分辨微通道板现状及发展[J]. 红外技术, 2024, 46(4): 460-466.
引用本文: 邱祥彪, 杨晓明, 孙建宁, 王健, 丛晓庆, 金戈, 曾进能, 张正君, 潘凯, 陈晓倩. 高空间分辨微通道板现状及发展[J]. 红外技术, 2024, 46(4): 460-466.
QIU Xiangbiao, YANG Xiaoming, SUN Jianning, WANG Jian, CONG Xiaoqing, JIN Ge, ZENG Jinneng, ZHANG Zhengjun, PAN Kai, CHEN Xiaoqian. Status and Development of High Spatial Resolution Microchannel Plate[J]. Infrared Technology , 2024, 46(4): 460-466.
Citation: QIU Xiangbiao, YANG Xiaoming, SUN Jianning, WANG Jian, CONG Xiaoqing, JIN Ge, ZENG Jinneng, ZHANG Zhengjun, PAN Kai, CHEN Xiaoqian. Status and Development of High Spatial Resolution Microchannel Plate[J]. Infrared Technology , 2024, 46(4): 460-466.

高空间分辨微通道板现状及发展

详细信息
    作者简介:

    邱祥彪(1989-),男,硕士,高级工程师,主要研究方向:微通道板及微通道板型光电探测器,E-mail:ndqxb@163.com

  • 中图分类号: TN223

Status and Development of High Spatial Resolution Microchannel Plate

  • 摘要: 微通道板(MCP)是超二代、三代微光像增强器中的核心元件之一,其空间分辨能力对于微光像增强器分辨力、传函、光晕(Halo)等性能有重要的影响。基于最先进的超二代和三代像增强器所采用MCP的新技术发展,整理国内外已经开展的研究成果报道,从像增强器成像过程中与MCP直接相关的光电子入射至MCP输入面、MCP电子倍增、倍增电子图像输出3个阶段进行系统梳理分析,明确先进像增强器对于微通道板高空间分辨的具体性能需求。提出国产MCP的发展方向展望:未来几年研制孔径5 μm、开口面积比70%左右、输出电极优化的MCP并批量应用;应用于超二代像增强器的MCP需要开展小孔径扩口以及电子减速膜等新技术研究,使MCP开口面积比达到90%以上、像增强器传函与对比度性能显著提升;应用于三代像增强器的MCP需要开展低放气、低离子反馈MCP研究以支撑无膜三代像增强器的研发,抑制Halo、提高信噪比,在实现无膜MCP的基础上,扩口技术、输入增强膜层技术、电子减速膜等MCP技术均有应用于三代像增强器中的潜力。
  • 图  1  光子散射噪声形成示意图[10]

    Figure  1.  Schematic diagram of photon scattering[10]

    图  2  干法刻蚀形成扩口MCP示意图[13]

    Figure  2.  Schematic diagram of funnel MCP manufacture by dryetching[13]

    图  3  MCP非开口面电子散射示意图[14]

    Figure  3.  Schematics of electrons scattering for MCP non-open area[14]

    图  4  标准三代与NGEOS无膜三代像增强器Halo对比[7]

    Figure  4.  Halo of standard GEN Ⅲ and NGEOS Halo free I2[7]

    图  5  MCP输入端镀膜示意图

    Figure  5.  Diagram of input end of MCP with coated film

    图  6  镀膜A区与未镀膜B区传函对比[18]

    Figure  6.  MTF of zone A (Coated) and zone B (Uncoated)[18]

    图  7  二次电子运动示意图[18]

    Figure  7.  Diagram of trajectory of secondary electron[18]

    图  8  孔径5 μm MCP与孔径2 μm MCP对比[21]

    Figure  8.  Comparison of the 5 μm pore and 2 μm pore MCP[21]

    图  9  微通道板孔间距与传函关系[21]

    Figure  9.  Progression of MCP pitch versus MTF[21]

    图  10  孔径5 μm MCP与孔径2 μm MCP分辨力对比[21]

    Figure  10.  Resolution comparison between 2 μm pore MCP and 5 μm pore MCP[21]

    图  11  不同斜切角MCP对应MTF曲线[22]

    Figure  11.  MTF curves of MCP with different bias angles[22]

    图  12  MCP输出电子能量分布[24]

    Figure  12.  Energy distribution of output electrons from MCP[24]

    图  13  沟槽结构模型及不同结构二次电子发射系数[26]

    Figure  13.  Trench structure model and secondary electron emission coefficients of different structures[26]

    图  14  不同腐蚀工艺构造缺陷及二次电子发射系数[29]

    Figure  14.  Structural defects and secondary electron emission coefficients of different corrosion processes[29]

    图  15  MCP输出电子轨迹示意图:(a) 无电子减速膜,(b) 有电子减速膜

    Figure  15.  Schematic diagram of output electron trajectory of MCP: (a) without electron deceleration film, (b) with electron deceleration film

  • [1] 潘京生. 微通道板及其主要特征性能[J]. 应用光学, 2004, 25(5): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX200405008.htm

    PAN Jingsheng. Microchannel plates and its main characteristics[J]. Journal of Applied Optics, 2004, 25(5): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX200405008.htm
    [2] 潘京生. 像增强器的迭代性能及其评价标准[J]. 红外技术, 2020, 42(6): 509-518. http://hwjs.nvir.cn/article/id/hwjs202006001

    PAN Jingsheng. Image intensifier upgraded performance and evaluation standard[J]. Infrared Technology, 2020, 42(6): 509-518. http://hwjs.nvir.cn/article/id/hwjs202006001
    [3] 程宏昌, 石峰, 李周奎, 等. 微光夜视器件划代方法初探[J]. 应用光学, 2021, 42(6): 1092-1011. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202106023.htm

    CHENG Hongchang, SHI Feng, LI Zhoukui, et al. Preliminary study on distinguishment method of low-level-light night vision devices[J]. Journal of Applied Optics, 2021, 42(6): 1092-1101. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202106023.htm
    [4] 李晓峰, 赵恒, 张彦云, 等. 高性能超二代像增强器及发展[J]. 红外技术, 2021, 43(9): 811-816. http://hwjs.nvir.cn/article/id/5a0a0141-171d-410c-bb3f-ac14dc76e189

    LI Xiaofeng, ZHAO Heng, ZHANG Yanyun, et al. High performance super second generation image intensifier and its further development[J]. Infrared Technology, 2021, 43(9): 811-816. http://hwjs.nvir.cn/article/id/5a0a0141-171d-410c-bb3f-ac14dc76e189
    [5] Bosch L A. Image intensifier tube performance is what matters[C]//Image Intensifiers and Applications Ⅱ of SPIE, 2000, 4128: 65-78.
    [6] Haque M J, Muntjir M. Night vision technology: an overview[J]. International Journal of Computer Applications, 2017, 167(13): 37-42. doi:  10.5120/ijca2017914562
    [7] Estrera J P, Ostromek T E, Bacarella A V, et al. Advanced image intensifier night vision system technologies: status and summary 2002[C]//Low-Light-Level and Real-Time Imaging Systems, Components, and Applications of SPIE, 2003, 4796: 49-59.
    [8] Photonis Corp. 4G+ Image Intensifier Tube [EB/OL]. https://www.photonis.com/system/files/2021-05/210507%20Leaflet%2042B_0.pdf 2022-6-15.
    [9] L3Harris Technologies, Inc. AN/PVS-31C–BNVD [EB/OL]. https://ww.l3harris.com/sites/default/files/2020-09/cs-ivs-an-pvs-31c-bnvdatasheet_0.pdf. 2022-6-15.
    [10] 郭雅宁. 微通道板输入面光子反射特性研究[D]. 长春: 长春理工大学, 2018.

    GUO Yaning. Study on Photon Reflection Characteristic of Input Surface of Microchannel Plate[D]. Changchun: Changchun University of Science and Technology, 2018.
    [11] 刘术林, 匡蕾, 孙建宁, 等. 降低微通道板输入面电极反射率的技术途径[J]. 应用光学, 2011, 32(2): 296-299. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201102025.htm

    LIU Shulin, KUANG Lei, SUN Jianning, et al. Technical solution on reducing reflectance of MCP inputsurface electrode[J]. Journal of Applied Optics, 2011, 32(2): 296-299. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201102025.htm
    [12] Hamamatsu Photonics K. K. MCP assembly[EB/OL]. http://www.hamamatsu.com.cn/UserFiles/upload/file/20212021/MCP.pdf 2022-6-15.
    [13] 邱祥彪, 闵信杰, 金戈, 等. 采用干法刻蚀进行微通道板扩口理论模型研究[J]. 红外技术, 2022, 44(8): 818-823. http://hwjs.nvir.cn/article/id/3a4581d2-bc9b-427e-9aaf-ae217c7218c6

    QIU Xiangbiao, MIN Xinjie, JIN Ge, et al. Theoretical model of funnel microchannel plate fabricated through dry etching[J]. Infrared Technology, 2022, 44(8): 818-823. http://hwjs.nvir.cn/article/id/3a4581d2-bc9b-427e-9aaf-ae217c7218c6
    [14] 程耀进, 石峰, 郭晖, 等. MCP参数对微光像增强器分辨力影响研究[J]. 应用光学, 2010, 31(2): 292-296. doi:  10.3969/j.issn.1002-2082.2010.02.028

    CHENG Yaojin, SHI Feng, GUO Hui, et al. Effect of MCP parameters on resolution of image intensifier[J]. Journal of Applied Optics, 2010, 31(2): 292-296. doi:  10.3969/j.issn.1002-2082.2010.02.028
    [15] 顾燕. 电子散射对微光像增强器分辨力的影响研究[D]. 南京: 南京理工大学, 2009.

    GU Yan. Effect of Electron Scattering on Resolution of LLL Image Intensifier[D]. Nanjing: Nanjing University of Technology, 2009.
    [16] Photonis Corp. Technical note: Halo[EB/OL]. https://www.photonis.com/system/files/2019-03/Halo.pdf 2022-6-15.
    [17] Estrera J P, Ostromek T E, Bacarella A V, et al. Advanced image intensifier night vision system technologies: status and summary 2002[C]//SPIE, 2003, 4796: 49-60.
    [18] 李晓峰, 李廷涛, 曾进能, 等. 微通道板输入信号利用率提高研究[J]. 光子学报, 2020, 49(3): 0325002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202003022.htm

    LI Xiaofeng, LI Tingtao, ZENG Jinneng, et al. Study on the improvement of input signal utilization of MCP[J]. Acta Photonica Sinica, 2020, 49(3): 0325002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202003022.htm
    [19] 曾进能, 李廷涛, 常乐, 等. MCP输入增强膜对像增强器主要性能的影响研究[J]. 红外技术, 2020, 42(8): 735-741. http://hwjs.nvir.cn/article/id/hwjs202008005

    ZENG Jinneng, LI Tingtao, CHANG Le, et al. Effect of MCP input enhancement film on image intensifier performance[J]. Infrared Technology, 2020, 42(8): 735-741. http://hwjs.nvir.cn/article/id/hwjs202008005
    [20] Csorba I I P. Modulation transfer function (MTF) of image intensifier tubes[C]//Assessment of Imaging Systemsof SPIE, 1981, 274: 42-51.
    [21] Glesener J, Estrera J. Two micron pore size MCP-based image intensifiers[C]//Optical Components and Materialsof SPIE, 2010, 7598: 310-315.
    [22] WANG Y, YANG G W, CHANG B K. Effect of changing the MCP's bias angle on resolution of image intensifier[C]//2010 8th International Vacuum Electron Sources Conference and Nanocarbon of IEEE, 2010: 244-246.
    [23] Hoenderken T H, Hagen C W, Barth J E, et al. Influence of the microchannel plate and anode gap parameters on the spatial resolution of an image intensifier[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2001, 19(3): 843-850.
    [24] 李晓峰, 常乐, 曾进能, 等. 微通道板分辨力提高研究[J]. 光子学报, 2019, 48(12): 1223002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201912016.htm

    LI Xiaofeng, CHANG Le, ZENG Jinneng, et al. Study on resolution improvement of microchannel plate[J]. Acta Photonica Sinica, 2019, 48(12): 1223002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201912016.htm
    [25] Koshida N, Kiuchi Y. Influence of output electron energy distribution of microchannel plates on the resolution of image intensifiers[J]. Advances in Electronics and Electron Physics., 1988, 74: 79-85.
    [26] WANG L, BANE K, CHEN C, et al. Suppression of secondary electron emission using triangular grooved surface in the ILC dipole and wiggler magnets[C]//2007 IEEE Particle Accelerator Conference (PAC) of IEEE, 2007: 4234-4236.
    [27] 胡天存, 曹猛, 鲍艳, 等. 基于ZnO阵列的银表面二次电子发射抑制技术[J]. 中国空间科学技术, 2017, 37(2): 54-60. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ201702008.htm

    HU Tiancun, CAO Meng, BAO Yan, et al. Technique for inhibiting secondary electron emission of silver based on ZnO array[J]. Chinese Space Science and Technology, 2017, 37(2): 54-60. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ201702008.htm
    [28] 王丹, 贺永宁, 叶鸣, 等. 金纳米结构表面二次电子发射特性[J]. 物理学报, 2018, 67(8): 087902. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201808023.htm

    WANG Dan, HE Yongning, YE Ming, et al. Secondary electron emission characteristics of gold nanostructures[J]. Acta Phys. Sin., 2018, 67(8): 087902. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201808023.htm
    [29] 贺永宁, 王丹, 叶鸣, 等. 铝合金镀银表面粗糙化处理方法及其SEY抑制机理[J]. 表面技术, 2018, 47(5): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201805003.htm

    HE Yongning, WANG Dan, YE Ming, et al. Roughening method and SEY inhibition mechanism of aluminium alloy silver plated surface[J]. Surface Technology, 2018, 47(5): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201805003.htm
    [30] Gert Otto Nützel. Image intensifier for night vision device: US 10, 886, 095 B2 [P]. United States, 2021-1-5.
  • 加载中
图(15)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  13
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-15
  • 修回日期:  2023-07-29
  • 刊出日期:  2024-04-20

目录

    /

    返回文章
    返回