留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于红外数字全息的建筑爆破环境应力场检测研究

赖本林 张永安 张亚萍 田丽 赵丹露 黄俊豪 王刚 赵航

赖本林, 张永安, 张亚萍, 田丽, 赵丹露, 黄俊豪, 王刚, 赵航. 基于红外数字全息的建筑爆破环境应力场检测研究[J]. 红外技术, 2023, 45(1): 102-109.
引用本文: 赖本林, 张永安, 张亚萍, 田丽, 赵丹露, 黄俊豪, 王刚, 赵航. 基于红外数字全息的建筑爆破环境应力场检测研究[J]. 红外技术, 2023, 45(1): 102-109.
LAI Benlin, ZHANG Yongan, ZHANG Yaping, TIAN Li, ZHAO Danlu, HUANG Junhao, WANG Gang, ZHAO Hang. Research on Stress Field Detection of Building Blasting Environment Based on Infrared Digital Holography[J]. Infrared Technology , 2023, 45(1): 102-109.
Citation: LAI Benlin, ZHANG Yongan, ZHANG Yaping, TIAN Li, ZHAO Danlu, HUANG Junhao, WANG Gang, ZHAO Hang. Research on Stress Field Detection of Building Blasting Environment Based on Infrared Digital Holography[J]. Infrared Technology , 2023, 45(1): 102-109.

基于红外数字全息的建筑爆破环境应力场检测研究

基金项目: 

云南省基础研究项目 2019FI002

云南省基础研究项目 202101AS070018

云南省基础研究项目 202101AV070015

详细信息
    作者简介:

    赖本林(1998-),男,云南丽江人,硕士研究生,主要研究方向为红外全息检测及图像处理。E-mail:1821422635@qq.com

    通讯作者:

    张永安(1965-),男,云南昆明人,高级实验师,硕士,主要研究方向为全息及光信息处理。E-mail:1295720542@qq.com

  • 中图分类号: TN219

Research on Stress Field Detection of Building Blasting Environment Based on Infrared Digital Holography

  • 摘要: 红外数字全息具有实时性强、可在复杂环境检测等优点;爆破环境的粉尘类气溶胶对可见光有较强的吸收、散射效应,红外波段处于“大气窗口”波长的红外光受气溶胶影响较小,该优势与数字全息相结合,本文提出一种可在高浓度粉尘环境下测量应力场的研究方法。将大小适中的光滑水泥板固定于三维施力架上作为研究对象,采用红外数字全息方法,改变环境粉尘浓度,分别测量光滑水泥板在不同压力作用下的应力场变化,对比全息图、相位差,验证了该方法的可行性,并设置可见光数字全息为对照实验。结果表明,红外数字全息可在高浓度粉尘环境下测量出应力场的施力点、压力相对大小及应力影响区域,实现实时、无损、全场检测,而可见光数字全息在此环境下检测效果不佳甚至无法完成检测,本文所提方法极大拓展了基于数字全息干涉计量应力检测手段的实用性。
  • 图  1  实验光路图

    Figure  1.  Experimental light path diagram

    图  2  无粉尘环境不同压力全息图

    Figure  2.  Hologram of different pressures in dust-free environment

    图  3  无粉尘环境不同压力相位差重建

    Figure  3.  Reconstruction of different pressure phase difference in dust-free environment

    图  4  不同粉尘浓度环境下压力35N红外全息图

    Figure  4.  Pressure 35N infrared hologram under different dust concentration environments

    图  5  不同粉尘浓度环境下压力35 N可见光全息图

    Figure  5.  Pressure 35 N visible light hologram under different dust concentration environments

    图  6  不同粉尘浓度环境下压力35 N红外相位差重建

    Figure  6.  Pressure 35 N infrared phase difference reconstruction under different dust concentration environments

    图  7  不同粉尘浓度环境下压力35 N可见光相位差重建

    Figure  7.  Pressure 35 N visible light phase difference reconstruction under different dust concentration environments

  • [1] 郑德香, 张岩, 沈京玲, 等. 数字全息技术的原理和应用[J]. 物理, 2004(11): 843-847. doi:  10.3321/j.issn:0379-4148.2004.11.011

    ZHENG Dexiang, ZHANG Yan, SHEN Jingling, et al. Principle and application of digital holography[J]. Physics, 2004(11): 843-847. doi:  10.3321/j.issn:0379-4148.2004.11.011
    [2] 范美霞, 张永安, 李忠芳. 反射式数字实时全息法对岩石应力场的研究[J]. 激光技术, 2010, 34(4): 502-505. doi:  10.3969/j.issn.1001-3806.2010.04.019

    FAN Meixia, ZHANG Yongan, LI Zhongfang. Application of reflecting real-time digital holography in thermal stress field of rock[J]. Laser Technology, 2010, 34(4): 502-505. doi:  10.3969/j.issn.1001-3806.2010.04.019
    [3] 刘诚, 朱健强. 数字全息形貌测量的基本特性分析[J]. 强激光与粒子束, 2002(3): 328-330. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY200203002.htm

    LIU Cheng, ZHU Jianqiang. Basic characters of digital holographic profiling[J]. High Power Laser and Particle Beams, 2002(3): 328-330. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY200203002.htm
    [4] 闫浩, 隆军, 刘驰越, 等. 数字全息技术及散斑干涉技术在形变测量领域的发展及应用[J]. 红外与激光工程, 2019, 48(6): 154-166. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201906011.htm

    YAN Hao, LONG Jun, LIU Chiyue, et al. Review of the development and application of deformation measurement based on digital holography and digital speckle interferometry[J]. Infrared and Laser Engineering, 2019, 48(6): 154-166. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201906011.htm
    [5] GELTRUDE A, LOCATELLI M, POGGI P, et al. Infrared Digital Holography for large objects investigation[C]//Optical Measurement Systems for Industrial Inspection Ⅶ., 2011: 80820C-1-80820C-7.
    [6] Pasquale Poggi, Locatelli M, Pugliese E, et al. Remote monitoring of building oscillation modes by means of real-time mid infrared digital holography[J]. Scientific Reports, 2016, 6(1): 3042-3063. https://www.nature.com/articles/srep23688
    [7] SD Nicola, P Ferraro, S Grilli, et al. Infrared digital reflective-holographic 3D shape measurements[J]. Optics Communications, 2008, 281(6): 1445-1449. doi:  10.1016/j.optcom.2007.11.059
    [8] Locatelli M, Pugliese E, Paturzo M, et al. Seeing through smoke and flames: a challenge for imaging capabilities, met thanks to digital holography at far infrared[C]//Optical Measurement Systems for Industrial Inspection Ⅷ, 2013, doi: 10.1117/12.2020921.
    [9] Locatelli M, Pugliese E, Paturzo M, et al. Imaging live humans through smoke and flames using far-infrared digital holography[J]. Optics Express, 2013, 21(5): 5379-90. doi:  10.1364/OE.21.005379
    [10] Ferrar O, Pietr O. Infrared digital holography as new 3D imaging tool for first responders and firefighters: Recent achievements and perspectives[C]//2014 Conference on Lasers and Electro-Optics, 2014: 1-2.
    [11] Bianco V, Paturzo M, Finizio A, et al. Revealing fire survivors hidden behind smoke and flames by IR active imaging systems[C]//2014 International Carnahan Conference on Security Technology (ICCST). IEEE, 2014: 1-3.
    [12] Bianco V, Paturzo M, Finizio A, et al. Portable IR laser system for real-time display of alive people in fire scenes[J]. Journal of Display Technology, 2015, 11(10): 834-838. doi:  10.1109/JDT.2014.2381366
    [13] 刘万里. 红外全息检测技术的研究[D]. 昆明: 昆明理工大学, 2019.

    LIU Wanli. Research on Infrared Holographic Detection Technology[D]. Kunming: Kunming University of Science and Technology, 2019.
    [14] 柴金燕, 黄晁, 陈春燕, 等. 透火焰红外数字全息图像的分辨率增强算法[J]. 光电工程, 2019, 46(4): 39-46. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201904005.htm

    CHAI Jinyan, HUANG Chao, CHEN Chunyan, et al. Resolution enhancement algorithm of through flame infrared digital hologram [J]. Optoelectronic Engineering, 2019, 46(4): 39-46. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201904005.htm
    [15] 杨超. 红外数字全息图像增强关键技术研究[D]. 南京: 南京邮电大学, 2019.

    YANG Chao. Research on Key Technologies of Infrared Digital Hologram Enhancement[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2019.
    [16] 钟杰, 李作友, 刘振清, 等. 测量粒子场的红外激光同轴全息技术[J]. 激光与红外, 2009, 39(11): 1251-1254. doi:  10.3969/j.issn.1001-5078.2009.11.028

    ZHONG Jie, LI Zuoyou, LIU Zhenqing, et al. Infrared laser coaxial holography for particle field measurement [J]. Laser and Infrared, 2009, 39(11): 1251-1254. doi:  10.3969/j.issn.1001-5078.2009.11.028
    [17] 史宁昌, 王迅, 张存林. 红外热波成像技术在文物保护修复中的应用[J]. 中国国家博物馆馆刊, 2017(5): 149-157. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLBK201705018.htm

    SHI Ningchang, WANG Xun, ZHANG Cunlin. The Application of Infrared Thermal Wave Imaging Technology in Conservation[J]. Journal of Natioal Museum of China, 2017(5): 149-157. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLBK201705018.htm
    [18] 张慧慧. 红外热成像无损检测石质文物渗水病害的实验研究[J]. 辽宁省交通高等专科学校学报, 2013, 15(6): 20-22. https://www.cnki.com.cn/Article/CJFDTOTAL-LJTX201306007.htm

    ZHANG Huihui. The Experimental Study on the Use of Infrared Thermal Imaging for Nondestructive Detection of Deterioration Disease in Stone Relics[J]. Journal of Liaoning Provincial College of Communications, 2013, 15(6): 20-22. https://www.cnki.com.cn/Article/CJFDTOTAL-LJTX201306007.htm
    [19] 张延岗. 火灾烟颗粒群多分散与单分散模型及干扰颗粒光散射特性的比较研究[D]. 合肥: 合肥工业大学, 2012: 14-19.

    ZHANG Yangang. Study on the Characteristics of Light Scattering by Compare Polydisperse with Monodisperse of Fire Smoke Particles, and with Interfering Particles[D]. Hefei: Hefei University of Technology, 2012: 14-19.
    [20] 钱晓凡. 信息光学数字实验室[M]. 北京: 科学出版社, 2015: 99-136.

    QIAN Xiaofan. Information Optics Digital Lab[M]. Beijing: Science Press, 2015: 99-136.
    [21] 崔宝. 城市废弃建筑物爆破拆除中的污染防治[J]. 建材技术与应用, 2004(1): 30-31. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJC200401010.htm

    CUI Bao. Pollution prevention in blasting demolition of urban abandoned buildings[J]. Research and Application of Building Materials, 2004(1): 30-31. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJC200401010.htm
    [22] 刘智. 激光烟雾衰减测试系统的研制[D]. 长春: 长春光学精密机械学院, 2001.

    LIU Zhi. Development of Laser Smoke Attenuation Testing System[D]. Changchun: Changchun Institute of Optics and Fine Mechanics, 2001.
    [23] 李丽芳. 大气气溶胶粒子散射对激光大气传输影响的研究[D]. 太原: 中北大学, 2013.

    LI Lifang. The Study of Atmospheric Aerosol Particles Scattering Impact on Laser Propagation in the Atmosphere[D]. Taiyuan: North University of China, 2013.
    [24] 冯继青, 高春清, 刘义东, 等. 激光对于烟雾的穿透特性分析[J]. 光学技术, 2006, 32(6): 883-885. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS200606022.htm

    FENG Jiqing, GAO Chunqing, LIU Yidong, et al. Analysis of the characteristic of laser transmitting in smog[J]. Journal of Optical Technology, 2006, 32(6): 883-885. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS200606022.htm
    [25] 江恒. 激光羽烟透过率测试系统[D]. 武汉: 华中科技大学, 2005.

    JIANG Heng. Transmissivity Testing System of the Plume Penetrated by Laser[D]. Wuhan: Huazhong University of Science and Technology, 2005.
    [26] 朱金华, 夏军, 梁钱福, 等. 建筑物爆破粉尘控制[J]. 采矿技术, 2009, 9(5): 125-126. https://www.cnki.com.cn/Article/CJFDTOTAL-SJCK200905047.htm

    ZHU Jinhua, XIA Jun, LIANG Qianfu, et al. Building blasting dust control[J]. Journal of Mining Technology, 2009, 9(5): 125-126. https://www.cnki.com.cn/Article/CJFDTOTAL-SJCK200905047.htm
  • 加载中
图(7)
计量
  • 文章访问数:  130
  • HTML全文浏览量:  70
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-26
  • 修回日期:  2022-09-13
  • 刊出日期:  2023-01-20

目录

    /

    返回文章
    返回