留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可见光与红外图像组K-SVD融合方法

王志社 姜晓林 武圆圆 王君尧

王志社, 姜晓林, 武圆圆, 王君尧. 可见光与红外图像组K-SVD融合方法[J]. 红外技术, 2021, 43(5): 455-463.
引用本文: 王志社, 姜晓林, 武圆圆, 王君尧. 可见光与红外图像组K-SVD融合方法[J]. 红外技术, 2021, 43(5): 455-463.
WANG Zhishe, JIANG Xiaolin, WU Yuanyuan, WANG Junyao. Visible and Infrared Image Fusion Based on Group K-SVD[J]. Infrared Technology , 2021, 43(5): 455-463.
Citation: WANG Zhishe, JIANG Xiaolin, WU Yuanyuan, WANG Junyao. Visible and Infrared Image Fusion Based on Group K-SVD[J]. Infrared Technology , 2021, 43(5): 455-463.

可见光与红外图像组K-SVD融合方法

基金项目: 

山西省面上自然基金项目 201901D111260

信息探测与处理山西省重点实验室开放研究基金 ISTP2020-4

山西省“1331”工程重点创新团队建设计划资助 2019 3-3

太原科技大学博士启动基金 20162004

详细信息
    作者简介:

    王志社(1982-)男,副教授,博士,研究方向为红外图像处理、机器学习和信息融合。E-mail:wangzs@tyust.edu.cn

  • 中图分类号: TP391.4

Visible and Infrared Image Fusion Based on Group K-SVD

  • 摘要: 传统稀疏表示融合方法,以图像块进行字典训练和稀疏分解,由于没有考虑图像块之间的内在联系,易造成字典原子表征图像特征能力不足、稀疏系数不准确,导致图像融合效果不好。为此,本文提出可见光与红外图像组K-SVD(K-means singular value decomposition)融合方法,利用图像的非局部相似性,将相似图像块构造成图像结构组矩阵,通过组K-SVD进行字典训练和稀疏分解,可以有效提高字典原子的表征能力及稀疏系数的准确性。实验结果表明,该方法在主观和客观评价上都优于传统稀疏融合方法。
  • 图  1  可见光与红外图像非局部相似性示意图

    Figure  1.  Schematic diagram of non-local similarity for visible and infrared images

    图  2  相似结构组矩阵示意图

    Figure  2.  Schematic diagram of similar structure group matrix

    图  3  融合方法总体框架

    Figure  3.  The framework of proposed fusion method

    图  4  “Nato_camp”图像融合实验结果

    Figure  4.  The experimental results of Nato_camp images

    图  5  “Kaptein”图像融合实验结果

    Figure  5.  The experimental results of Kaptein images

    图  6  “Duine”图像融合实验结果

    Figure  6.  The experimental results of Duine images

    图  7  “Road”图像融合实验结果

    Figure  7.  The experimental results of Road images

    图  8  图像序列“Nato_camp”的客观评价指标

    Figure  8.  Objective evaluation index of Nato_camp sequence

    图  9  图像序列“Duine”的客观评价指标

    Figure  9.  Objective evaluation index of Duine sequence

    表  1  “Nato_camp”图像融合客观评价指标

    Table  1.   Objective evaluation index of Nato_camp images

    Method Q0 Qw Qe Qab/f
    SR 0.5857 0.7322 0.7151 0.3216
    ASR 0.5966 0.7617 0.7439 0.4673
    JSR 0.5649 0.7311 0.7140 0.3760
    The proposed 0.5926 0.7737 0.7556 0.4871
    下载: 导出CSV

    表  2  “Kaptein”图像融合客观评价指标

    Table  2.   Objective evaluation index of Kaptein images

    Method Q0 Qw Qe Qab/f
    SR 0.5759 0.7365 0.7193 0.2489
    ASR 0.5760 0.7659 0.7480 0.4206
    JSR 0.5445 0.7231 0.7062 0.3400
    The proposed 0.5794 0.7941 0.7755 0.4807
    下载: 导出CSV

    表  3  “Duine”图像融合客观评价指标

    Table  3.   Objective evaluation index of Duine images

    Method Q0 Qw Qe Qab/f
    SR 0.6426 0.8760 0.8555 0.2463
    ASR 0.6781 0.9247 0.9031 0.5604
    JSR 0.3215 0.7440 0.7266 0.2091
    The proposed 0.6750 0.9312 0.9094 0.4783
    下载: 导出CSV

    表  4  “Road”图像融合客观评价指标

    Table  4.   Objective evaluation index of road images

    Method Q0 Qw Qe Qab/f
    SR 0.6909 0.7994 0.7807 0.5101
    ASR 0.6941 0.8053 0.7865 0.6073
    JSR 0.6346 0.7763 0.7581 0.5210
    The proposed 0.6924 0.8099 0.7909 0.5815
    下载: 导出CSV

    表  5  不同融合方法评价指标的平均值

    Table  5.   The average evaluation for different fused methods

    Method Q0 Qw Qe Qab/f
    SR 0.6238 0.7860 0.7677 0.3276
    ASR 0.6358 0.8156 0.7965 0.5066
    JSR 0.5264 0.7436 0.7262 0.3544
    The proposed 0.6349 0.8272 0.8079 0.5053
    下载: 导出CSV
  • [1] MA J, MA Y, LI C. Infrared and visible image fusion methods and applications: A survey[J]. Information Fusion, 2019, 45: 153-178. doi:  10.1016/j.inffus.2018.02.004
    [2] LI S, KANG X, FANG L, et al. Pixel-level image fusion: a survey of the state of the art[J]. Information Fusion, 2017, 33: 100-112. doi:  10.1016/j.inffus.2016.05.004
    [3] Elguebaly T, Bouguila N. Finite asymmetric generalized Gaussian mixture models learning for infrared object detection[J]. Computer Vision and Image Understanding, 2013, 117(12): 1659-1671. doi:  10.1016/j.cviu.2013.07.007
    [4] LI H, DING W, CAO X, et al. Image registration and fusion of visible and infrared integrated camera for medium-altitude unmanned aerial vehicle remote sensing[J]. Remote Sensing, 2017, 9(5): 441. doi:  10.3390/rs9050441
    [5] LI S, YANG B, HU J. Performance comparison of different multi-resolution transforms for image fusion[J]. Information Fusion, 2011, 12(2): 74-84. doi:  10.1016/j.inffus.2010.03.002
    [6] FU Z, WANG X, XU J, et al. Infrared and visible images fusion based on RPCA and NSCT[J]. Infrared Physical Technology, 2016, 77: 114-123. doi:  10.1016/j.infrared.2016.05.012
    [7] ZHANG Q, LIU Y, Blum R, et al. Sparse representation based multi-sensor image fusion for multi-focus and multi-modality images: a review[J]. Information Fusion, 2018, 40: 57-75. doi:  10.1016/j.inffus.2017.05.006
    [8] ZHANG Z, XU Y, YANG J, et al. A survey of sparse representation: Algorithms and Applications [J]. IEEE Access, 2015(3): 490-530. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7102696
    [9] YANG B, LI S. Multifocus image fusion and restoration with sparse representation[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(4): 884-892. doi:  10.1109/TIM.2009.2026612
    [10] YU N, QIU T, BI F, et al. Image features extraction and fusion based on joint sparse representation[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5): 1074-1082. doi:  10.1109/JSTSP.2011.2112332
    [11] LIU Y, WANG Z. Simultaneous image fusion and denoising with adaptive sparse representation[J]. IET Image Processing, 2014, 9(5): 347-357. http://ieeexplore.ieee.org/document/7095698
    [12] LIU Y, LIU S, WANG Z. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 2015, 24: 147-164. doi:  10.1016/j.inffus.2014.09.004
    [13] WANG Z, YANG F, PENG Z, et al. Multi-sensor image enhanced fusion algorithm based on NSST and top-hat transformation[J]. Optik, 2015, 126(23): 4184-4190. doi:  10.1016/j.ijleo.2015.08.118
    [14] WANG Z, XU J, JIANG X, et al. Infrared and visible image fusion via hybrid decomposition of NSCT and morphological sequential toggle operator[J]. Optik, 2020, 201: 163497. doi:  10.1016/j.ijleo.2019.163497
    [15] 杨风暴. 红外偏振与光强图像的拟态融合原理和模型研究[J]. 中北大学学报: 自然科学版, 2017, 38(1): 1-7. doi:  10.3969/j.issn.1673-3193.2017.01.001

    YANG Fengbao. Research on Theory and Model of Mimic Fusion Between Infrared Polarization and Intensity Images[J]. Journal of North University of China, 2017, 38(1): 1-7. doi:  10.3969/j.issn.1673-3193.2017.01.001
    [16] LI H, WU X J. DenseFuse: A Fusion Approach to Infrared and Visible Images[J]. IEEE Transaction Image Processing, 2019, 28(5): 2614-2623. doi:  10.1109/TIP.2018.2887342
    [17] MA J, YU W, LIANG P, et al. Fusion GAN: A generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11-26. doi:  10.1016/j.inffus.2018.09.004
    [18] 姜晓林, 王志社. 可见光与红外图像结构组双稀疏融合方法研究[J]. 红外技术, 2020, 42(3): 272-278. http://hwjs.nvir.cn/article/id/hwjs202003010

    JIANG Xiaolin, WANG Zhishe. Visible and Infrared Image Fusion Based on Structured Group and Double Sparsity[J]. Infrared Technology, 2020, 42(3): 272-278. http://hwjs.nvir.cn/article/id/hwjs202003010
    [19] DONG W, LEI Z, SHI G. Nonlocally centralized sparse representation for image restoration[J]. IEEE Transactions on Image Processing, 2012, 22(4): 1620-1630. http://ieeexplore.ieee.org/document/6392274/
    [20] ZHANG J, ZHAO D, GAO W. Group-based sparse representation for image restoration[J]. IEEE Transactions on Image Processing, 2014, 23(8): 3336-3351. doi:  10.1109/TIP.2014.2323127
    [21] WANG Z, Bovik A, A universal image quality index[J]. IEEE Signal Processing Letters. 2002, 9(3): 81–84. doi:  10.1109/97.995823
    [22] Piella G, Heijmans H. A new quality metric for image fusion[C]//Proceedings of the 10th International Conference on Image Processing, 2003: 173-176.
    [23] Xydeas C. S, Petrovic V, Objective image fusion performance measure[J]. Electronics Letters, 2000, 36(4): 308-309. doi:  10.1049/el:20000267
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  579
  • HTML全文浏览量:  129
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-20
  • 修回日期:  2020-10-24
  • 刊出日期:  2021-05-22

目录

    /

    返回文章
    返回