留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于涡流脉冲热成像的焊缝表面多缺陷检测

王传钊 姜秀海 晁永生 王永兵 王勇勇

王传钊, 姜秀海, 晁永生, 王永兵, 王勇勇. 基于涡流脉冲热成像的焊缝表面多缺陷检测[J]. 红外技术, 2023, 45(1): 84-90.
引用本文: 王传钊, 姜秀海, 晁永生, 王永兵, 王勇勇. 基于涡流脉冲热成像的焊缝表面多缺陷检测[J]. 红外技术, 2023, 45(1): 84-90.
WANG Chuanzhao, JIANG Xiuhai, CHAO Yongsheng, WANG Yongbing, WANG Yongyong. Multi-defect Detection of Welding Surface Based on Eddy Current Pulse Thermography[J]. Infrared Technology , 2023, 45(1): 84-90.
Citation: WANG Chuanzhao, JIANG Xiuhai, CHAO Yongsheng, WANG Yongbing, WANG Yongyong. Multi-defect Detection of Welding Surface Based on Eddy Current Pulse Thermography[J]. Infrared Technology , 2023, 45(1): 84-90.

基于涡流脉冲热成像的焊缝表面多缺陷检测

基金项目: 

新疆维吾尔自治区自然科学基金项目 2020D01A104

详细信息
    作者简介:

    王传钊(1996-),男,新疆额敏人,硕士研究生,主要从事红外图像处理方面的研究。E-mail:1456911714@qq.com

    通讯作者:

    晁永生(1976-),男,新疆乌鲁木齐人,副教授,博士,主要从事智能制造方面的工作。E-mail:cys21st@163.com

  • 中图分类号: TH811.2

Multi-defect Detection of Welding Surface Based on Eddy Current Pulse Thermography

  • 摘要: 焊缝表面气孔缺陷的存在减少了工件的有效截面积,降低了工件抵抗外载荷的能力,严重时会导致工件断裂,为此提出一种基于涡流脉冲热成像技术的焊缝表面多缺陷检测方法。首先,采用一种新型电磁传感器结构,通过涡流脉冲热成像原理对不同直径和深度的碳钢缺陷进行检测,并分析了图像序列中缺陷区域与非缺陷区域的温度信号;为了提高该检测系统的灵敏度,采用主成分分析方法对图像序列进行图像重构,增强原始图像中缺陷特征。最后,通过实验验证了该方法,实验结果表明该方法能够减小焊缝边缘效应的影响,实现对焊缝表面缺陷的大面积检测,并为红外热像仪提供一个开放的视野。
  • 图  1  涡流热成像的检测原理

    Figure  1.  Detection principle of eddy current thermal imaging

    图  2  结构中的磁通量路径

    Figure  2.  Magnetic flux path in structure

    图  3  结构的磁路模型

    Figure  3.  Magnetic circuit model of the structure

    图  4  PCA热图像序列处理

    Figure  4.  PCA thermal image sequence processing

    图  5  涡流热成像试验系统

    Figure  5.  Eddy current thermal imaging test system

    图  6  磁芯结构图

    Figure  6.  Magnetic core structure diagram

    图  7  焊缝检测试件

    Figure  7.  Welding test specimen

    图  8  焊缝表面不同时刻热图像

    Figure  8.  Thermal images of welding surface at different moments

    图  9  缺陷处的温度曲线

    Figure  9.  Temperature curve at the defect

    图  10  缺陷与周围区域的温度差异

    Figure  10.  Temperature difference between defect and surrounding area

    图  11  沿焊缝缺陷L1方向的热分布

    Figure  11.  Heat distribution along the direction of weld defect L1

    图  12  不同时刻焊缝小孔缺陷的热图像

    Figure  12.  Thermal images of weld hole defects at different moments

    图  13  主成分重建图像

    Figure  13.  Principal component reconstruction image

    表  1  激励结构参数

    Table  1.   Dimensions of excitation structure

    Parameters L1 L2 L3 L4 L5 L6 L7
    Value/mm 100 70 15 15 70 15 15
    下载: 导出CSV

    表  2  圆孔缺陷参数

    Table  2.   Parameters of round hole defect

    Parameters D1 D2 D3 D4 D5 D6 D7 D8
    Diameter/mm 4 2 2 2 1 1 1 1
    Depth/mm 2 3 2 1 1 2 3 5
    下载: 导出CSV
  • [1] 沈功田. 承压设备无损检测与评价技术发展现状[J]. 机械工程学报, 2017, 53(12): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201712001.htm

    SHEN Gongtian. Development status of nondestructive testing and evaluation technology for pressure equipment[J]. Journal of Mechanical Engineering, 2017, 53(12): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201712001.htm
    [2] 王强, 胡秋平, 邱金星, 等. 航空复合材料内部缺陷差动式激光红外热成像检测[J]. 红外与激光工程, 2019, 48(5): 127-133. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201905017.htm

    WANG Qiang, HU Qiuping, QIU Jinxing, et al. Differential laser infrared thermal imaging detection of internal defects in aviation composites[J]. Infrared and Laser Engineering, 2019, 48(5): 127-133. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201905017.htm
    [3] Broberg P. Surface crack detection in welds using thermogra-phy[J]. NDT & E International, 2013, 57: 69-73. https://www.sciencedirect.com/science/article/pii/S096386951300056X
    [4] 胡松涛, 石文泽, 卢超, 等. 钢轨踏面裂纹电磁超声表面波同步挤压小波快速成像检测研究[J]. 仪器仪表学报, 2020, 41(1): 35-46. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB202001004.htm

    HU Songtao, SHI Wenze, LU Chao, et al. Study on electromagnetic ultrasonic surface wave synchronous extrusion wavelet rapid imaging detection of rail tread crack [J]. Journal of Instrumentation, 2020, 41(1): 35-46. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB202001004.htm
    [5] 寇光杰, 杨正伟, 贾庸, 等. 复杂型面叶片裂纹的超声红外热成像检测[J]. 红外与激光工程, 2019, 48(12): 101-109. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201912013.htm

    KOU Guangjie, YANG Zhengwei, JIA Yong, et al. Detection on cracks in blades with complex profile based on ultrasonic infrared thermal imaging[J]. Infrared and Laser Engineering, 2019, 48(12): 101-109. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201912013.htm
    [6] 张军, 朱晟桢, 毕贞法, 等. 基于金属磁记忆效应的高铁轮对早期故障检测[J]. 仪器仪表学报, 2018, 39(1): 162-170. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201801020.htm

    ZHANG Jun, ZHU Shengzhen, BI Zhenfa, et al. Early fault detection of high-speed rail wheelsets based on metal magnetic memory effect[J]. Journal of Instrumentation, 2018, 39(1): 162-170. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201801020.htm
    [7] YANG Ruizhen, HE Yunze. Logarithmic analysis of eddy current thermo-graphy based on longitudinal heat conduction for subsurface defect evaluation[J]. Infrared Physics & Technology, 2014, 67: 467-472. https://www.sciencedirect.com/science/article/pii/S1350449514001923
    [8] 王晓娜, 胡杨, 侯德鑫, 等. 基于方向调制原理的涡流热成像漆层下裂纹检测技术[J]. 仪器仪表学报, 2019, 40(12): 56-63. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201912007.htm

    WANG Xiaona, HU Yang, HOU Dexin, et al. Eddy current thermal imaging under paint crack detection technology based on direction modulation principle[J]. Journal of Instrumentation, 2019, 40(12): 56-63. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201912007.htm
    [9] HE Y, TIAN G Y, PAN M, et al. An investigation into eddy current pulsed thermography for detection of corrosion blister[J]. Corrosion Science, 2014, 78: 1-6. https://www.sciencedirect.com/science/article/pii/S0010938X13004010
    [10] XU Changhang, ZHANG Wuyang, WU Changwei, et al. An improved method of eddy current pulsed thermography to detect subsurface defects in glass fiber reinforced polymer composites[J]. Composite Structures, 2020, 242: 112145.
    [11] YANG Z W, YAN H P, LI Y, et al. A novel inclined excitation method for crack detection of non-ferromagnetic materials using eddy current thermography[J]. Strength of Materials, 2019, 51(4): 558-568.
    [12] 闫会朋, 杨正伟, 田干, 等. 基于涡流热成像的铁磁材料近面微裂纹检测[J]. 红外与激光工程, 2017, 46(3): 238-243. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201703036.htm

    YAN Huipeng, YANG Zhengwei, TIAN Gan, et al. Near surface microcrack detection of ferromagnetic materials based on eddy current thermal imaging[J]. Infrared and Laser Engineering, 2017, 46(3): 238-243. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201703036.htm
    [13] Barakat N, Mortadha J, Khan A, et al. A one-dimensional approach towards edge crack detection and mapping using eddy current thermography[J]. Sensors and Actuators A: Physical, 2020, 309: 111999.
    [14] Tsopelas N, Siakavellas N J. Experimental evaluation of electromagnetic-thermal non-destructive inspection by eddy current thermography in square aluminum plates[J]. Ndt & E International, 2011, 44(7): 609-620. https://www.sciencedirect.com/science/article/pii/S096386951100079X
    [15] TIAN Guiyun, GAO Yunlai, LI Kongjing, et al. Eddy current pulsed thermography with different excitation configurations for metallic material and defect characterization[J]. Sensors, 2016, 16(6): 843. https://www.mdpi.com/1424-8220/16/6/843/htm
    [16] ZHAO Jian, GAO Bin, Woo W L, et al. Crack evaluation based on novel circle-ferrite induction thermography[J]. IEEE Sensors Journal, 2017, 17(17): 5637-5645.
    [17] LIU Zewei, GAO Bin, TIAN Guiyun. Natural crack diagnosis system based on novel L-shaped electromagnetic sensing thermography[J]. IEEE Transactions on Industrial Electronics, 2019, 67(11): 9703-9714.
    [18] Hansen K A, Weisberg E C. Asymmetric induction work coil for thermoplastic welding: US, US5444220 A[P]. 1994-12-05
    [19] ZHU Z Q, PANG Y, Howe D, et al. Analysis of electromagnetic performance of flux-switching permanent-magnet machines by nonlinear adaptive lumped parameter magnetic circuit model[J]. Transactions on Magnetics, 2005, 41(11): 4277-428. https://ieeexplore.ieee.org/document/1532337
    [20] 万李涛, 熊楠菲, 王栋, 等. 信赖域方法在红外图像序列处理中的应用[J]. 红外与激光工程, 2020, 49(7): 258-264. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202007033.htm

    WAN Litao, XIONG Nanfei, WANG Dong, et al. Application of trust region method in infrared image sequence processing[J]. Infrared and Laser Engineering, 2020, 49(7): 258-264. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202007033.htm
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  168
  • HTML全文浏览量:  39
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-20
  • 修回日期:  2021-12-28
  • 刊出日期:  2023-01-20

目录

    /

    返回文章
    返回