留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采空区遗煤自燃红外非接触探测距离研究

王晓强 米万升 杨永辰

王晓强, 米万升, 杨永辰. 采空区遗煤自燃红外非接触探测距离研究[J]. 红外技术, 2024, 46(3): 354-361.
引用本文: 王晓强, 米万升, 杨永辰. 采空区遗煤自燃红外非接触探测距离研究[J]. 红外技术, 2024, 46(3): 354-361.
WANG Xiaoqiang, MI Wansheng, YANG Yongchen. Research on Infrared Effective Detection Distance for Predicting Spontaneous Combustion of Goaf Residual Coal Based on Non-contact Mode[J]. Infrared Technology , 2024, 46(3): 354-361.
Citation: WANG Xiaoqiang, MI Wansheng, YANG Yongchen. Research on Infrared Effective Detection Distance for Predicting Spontaneous Combustion of Goaf Residual Coal Based on Non-contact Mode[J]. Infrared Technology , 2024, 46(3): 354-361.

采空区遗煤自燃红外非接触探测距离研究

基金项目: 

河北省科学技术研究与发展计划资助项目 10276910D

详细信息
    作者简介:

    王晓强(1989-),男,山西孝义人,硕士,讲师,主要从事矿山安全方面的研究。E-mail: wxq4143@163.com

    通讯作者:

    杨永辰(1960-),男,河北灵寿人,教授,主要从事矿山安全方面的研究。E-mail: w1108hh@163.com

  • 中图分类号: TD75+2

Research on Infrared Effective Detection Distance for Predicting Spontaneous Combustion of Goaf Residual Coal Based on Non-contact Mode

  • 摘要: 采空区遗煤自燃是造成煤矿井下火灾事故的重要原因,受井下采空区实际情况限制,现有探测手段无法直接获得遗煤蓄热自燃的真实情况。本文利用红外热成像仪的非接触测温特点,通过测温原理分析、实验系统设计和搭建的手段,开展了贴近井下采空区真实环境的FOTRIC348红外热成像仪有效探测距离的测定实验,并进行了井下工程验证。结果表明,区域测温模式、线测温模式和点测温模式中FOTRIC348的有效探测距离分别为8~12 m、10~13 m和9~13 m;井下试验时FOTRIC348的有效探测距离为10~12 m;对上述探测距离取交集,综合判断FOTRIC348红外热成像仪在判断工作面两顺槽采空区遗煤蓄热自燃阶段的有效探测距离为10~12 m。该值的确定可为采空区遗煤自燃防治措施的实施提供针对性的决策依据。
  • 图  1  煤层露头位置红外热成像探测示例

    Figure  1.  Example of infrared thermal imaging detection of coal seam outcrop position

    图  2  红外热成像仪探测原理示意图

    Figure  2.  Schematic diagram of the detection principle of infrared thermal imager

    图  3  主要实验装备

    Figure  3.  Main experimental equipment

    图  4  不同探测距离的采空区煤自燃红外热成像预测效果实验系统

    Figure  4.  Experimental system for infrared thermal imaging prediction of coal spontaneous combustion in goaf with different detection distances

    ① Ambient temperature detector; ② Environmental wind speed and humidity detectors; ③ Power supply; ④ Power supply line for embedded constant temperature coal body heater; ⑤ T-shaped ruler; ⑥ Simulated goaf residual coal pile; ⑦ High temperature resistance test bench; ⑧ FOTRIC348 infrared thermal imager; ⑨ Movable sliding rod; ⑩ Concave movable slide rail; ⑪ Position card

    图  5  测线与测点布置

    Figure  5.  Layout of measuring lines and points

    图  6  区域测温模式中遗煤堆表面温度最高值与平均值随探测距离的变化趋势

    Figure  6.  The variation trend of the highest and average surface temperature values of residual coal piles with detection distance in regional temperature measurement mode

    图  7  线测温模式中遗煤堆表面温度平均值随探测距离的变化趋势

    Figure  7.  The variation trend of the average surface temperature of residual coal piles with detection distance in the line temperature measurement mode

    图  8  点测温模式中测点温度最大值随探测距离的变化趋势

    Figure  8.  The trend of the maximum temperature value of the measuring point in the point temperature measurement mode as a function of the detection distance

    图  9  采空区单滑轨深部红外探测系统示意图[13]

    1. 操作手柄;2. FOTRIC348红外热成像仪;3. 中空金属架(内穿防爆控制线缆);4. 滑动卡具;5. 单滑轨道;6. 固位卡槽;7. 顶板垮落的夹杂遗煤的矸石

    Figure  9.  Schematic diagram of single slide rail deep infrared detection system in goaf

    1. Operating handle; 2. FOTRIC348 infrared thermal imager; 3. Hollow metal frame (with explosion-proof control cables inside); 4. Sliding fixtures; 5. Single sliding track; 6. Fixed card slot; 7. Gangue mixed with coal residue due to roof collapse

    图  10  最高温度值随探测距离的变化

    Figure  10.  The variation of maximum temperature value with detection distance

    图  11  不同探测距离处的红外成像结果

    Figure  11.  Infrared imaging results at different detection distances

    表  1  煤样工业参数及筛分结果统计

    Table  1.   Statistics of industrial parameters and screening results of coal samples

    Particle size/mm Moisture content/% Ash content/% Volatile/% Sulfur content/% Density/(g/cm3) Quality/g Uniformity
    >30 0.82 25.98 17.90 0.38 6.75 5300 even
    20~30 3.50 5500
    下载: 导出CSV
  • [1] 王月红, 杨华, 王苗苗, 等. 浸水煤自燃热分析实验与活化能分析[J]. 华北理工大学学报: 自然科学版, 2023, 45(2): 110-118. https://www.cnki.com.cn/Article/CJFDTOTAL-HBLG202302014.htm

    WANG Yuehong, YANG Hua, WANG Miaomiao, et al. Thermal analysis experiment and activation energy analysis of submerged coal spontaneous combustion[J]. Journal of North China University of Science and Technology: Natural Science Edition, 2023, 45(2): 110-118. https://www.cnki.com.cn/Article/CJFDTOTAL-HBLG202302014.htm
    [2] 郭庆, 任万兴, 陆伟, 等. 回采工作面煤自燃气体演化规律及危险区域划分[J/OL]. 煤炭学报: 1-9. [2024-03-06]. http://kns.cnki.net/kcms/detail/11.2190.TD.20230331.1504.002.html.

    GUO Qing, REN Wanxing, LU Wei, et al. Spontaneous combustion gas evolution law and dangerous zone division of coal in stope face[J/OL]. Journal of China Coal Society, 1-9. [2024-03-06]. http://kns.cnki.net/kcms/detail/11.2190.TD.20230331.1504.002.html.
    [3] 张广杰, 芦晓伟, 王文. 自燃煤层沿空留巷采空区遗煤自燃规律及防控技术研究[J]. 煤炭技术, 2023, 42(4): 108-113. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS202304023.htm

    ZHANG Guangjie, LU Xiaowei, WANG Wen. Study on law and prevention and control technology of goaf residual coal spontaneous combustion of gob-side entry retaining in combustible coal seam[J]. Coal Technology, 2023, 42(4): 108-113. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS202304023.htm
    [4] 张天明, 杨胜强, 罗仁俊. "Y"型综采面新老采空区遗煤自燃氧化特点及瓦斯浓度分布规律[J]. 煤炭技术, 2023, 42(3): 178-181. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS202303032.htm

    ZHANG Tianming, YANG Shengqiang, LUO Renjun. Spontaneous combustion and oxidation characteristics of coal relics in old and new mining areas of "Y" type comprehensive mining face and gas concentration distribution law[J]. Coal Technology, 2023, 42(3): 178-181. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS202303032.htm
    [5] 柳博聪. 采空区遗煤自燃过程氡析出规律实验模拟研究[D]. 包头: 内蒙古科技大学, 2022.

    LIU Bocong. Experimental Simulation on Radon Precipitation Law During Spontaneous Combustion of Coal in Goaf[D]. Baotou: Inner Mongolia University of Science & Technology, 2022.
    [6] 张欣. 综放工作面采空区遗煤自燃防控研究[J]. 煤炭技术, 2021, 40(4): 104-108. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS202104031.htm

    ZHANG Xin. Study on prevention and control of coal spontaneous combustion in goaf of fully mechanized caving face[J]. Coal Technology, 2021, 40(4): 104-108. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS202104031.htm
    [7] 谭波, 朱红青, 王海燕, 等. 巷道高冒封闭火区燃烧状态及表面温度场演变规律[J]. 中南大学学报: 自然科学版, 2014, 45(3): 946-951. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201403040.htm

    TAN Bo, ZHU Hongqing, WANG Haiyan, et al. Combustion state and surface temperature field evolution of closed firing zone in top-coal caving region of coal drift[J]. Journal of Central South University: Science and Technology, 2014, 45(3): 946-951. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201403040.htm
    [8] 郑学召, 贾勇骁, 郭军, 等. 煤田火灾监测技术研究现状及展望[J]. 工矿自动化, 2019, 45(5): 6-10, 61. https://www.cnki.com.cn/Article/CJFDTOTAL-MKZD201905002.htm

    ZHENG Xuezhao, JIA Yongxiao, GUO Jun, et al. Research status and prospect of coalfield fire monitoring technologies[J]. Journal of Mine Automation, 2019, 45(5): 6-10, 61. https://www.cnki.com.cn/Article/CJFDTOTAL-MKZD201905002.htm
    [9] 杨永辰, 米万升, 李奇贤, 等. 红外热成像仪在判断采空区自燃中的应用效果模拟研究[J]. 煤炭技术, 2017, 36(1): 147-150. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201701058.htm

    YANG Yongchen, MI Wansheng, LI Qixian, et al. Application effect simulation of infrared thermal imager in gudqing spontaneous combustion in goaf[J]. Coal Technology, 2017, 36(1): 147-150. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201701058.htm
    [10] 杨永辰, 米万升, 曹少方, 等. 基于红外探测技术的巷道火源预测预报模拟研究[J]. 煤炭技术, 2018, 37(12): 124-126. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201812045.htm

    YANG Yongchen, MI Wansheng, CAO Shaofang, et al. Simulation research on prediction of roadway fire source based on infrared detection technology[J]. Coal Technology, 2018, 37(12): 124-126. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201812045.htm
    [11] 秦汝祥, 陶远, 何宗礼, 等. 近巷煤体高温区域红外成像探测与分析[J]. 煤田地质与勘探, 2014, 42(4): 90-92. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201404022.htm

    QIN Ruxiang, TAO Yuan, HE Zongli, et al. Detection and analysis of high temperature area of coal near roadway by infrared thermal imaging[J]. Coal Geology & Exploration, 2014, 42(4): 90-92. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201404022.htm
    [12] WEN Hu, MI W S, CHENG X J, et al. Experimental study on influencing factors of residual coal heat transfer in goaf based on infrared imaging[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(23): 13653-13664. DOI:  10.1007/s10973-022-11537-8.
    [13] 米万升. 基于红外探测技术的巷道火源预测预报研究[D]. 邯郸: 河北工程大学, 2018.

    MI Wansheng. The Study of Forecast of Tunnel Fire Source Based on Infrared Detection Technology[D]. Handan: Hebei University of Engineering, 2018.
    [14] 冯自宇, 孙昊, 张彦吉, 等. 大采高综采工作面采空区煤自燃危险区域研究与判定[J]. 煤炭技术, 2023, 42(4): 144-147. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS202304031.htm

    FENG Ziyu, SUN Hao, ZHANG Yanji, et al. Research and judgment of coal spontaneous combustion dangerous area in goaf of fully mechanized mining face with large mining height[J]. Coal Technology, 2023, 42(4): 144-147. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS202304031.htm
    [15] 周旭, 朱毅, 张九零, 等. 基于PSO-XGBoost的煤自燃程度预测研究[J]. 矿业安全与环保, 2022, 49(6): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER202206014.htm

    ZHOU Xu, ZHU Yi, ZHANG Jiuling, et al. Study on prediction model of coal spontaneous combustion based on PSO-XGBoost[J]. Mining Safety & Environmental Protection, 2022, 49(6): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER202206014.htm
    [16] 闫璟泓, 王方田, 张少华, 等. 高温采空区地热抽采方法及抽采效果控制因素研究[J]. 矿业安全与环保, 2022, 49(6): 85-90. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER202206015.htm

    YAN Jinghong, WANG Fangtian, ZHANG Shaohua, et al. Study on geothermal extraction method and control factors of extraction effect in high temperature goaf[J]. Mining Safety & Environmental Protection, 2022, 49(6): 85-90. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER202206015.htm
    [17] 柳东明. 火成岩侵入易自燃煤层超长俯采工作面采空区自燃"三带"分布范围研究[J]. 矿业安全与环保, 2022, 49(4): 135-139. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER202204018.htm

    LIU Dongming. Study on the distribution of "three zones"of spontaneous combustion in goaf of ultra-long downward working face with igneous rock intruding into coal seam prone to spontaneous combustion[J]. Mining Safety & Environmental Protection, 2022, 49(4): 135-139. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER202204018.htm
    [18] 杨富强, 范军富, 王兆峰, 等. 高家梁煤矿40101综采工作面采空区自燃"三带"分布规律研究[J]. 矿业安全与环保, 2022, 49(2): 96-101. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER202202017.htm

    YANG Fuqiang, FAN Junfu, WANG Zhaofeng, et al. Study on distribution law of "three zones" of spontaneous combustion in goaf of 40101 fully mechanized working face in Gaojialiang coal mine[J]. Mining Safety & Environmental Protection, 2022, 49(2): 96-101. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER202202017.htm
    [19] 杨红运, 刘延保, 李勇, 等. 近距离煤层群切顶留巷覆岩应力及变形响应研究[J]. 矿业安全与环保, 2022, 49(1): 8-13, 19. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER202201002.htm

    YANG Hongyun, LIU Yanbao, LI Yong, et al. Study on strata stress and deformation response of contiquous seams under cutting roof for entry retaining[J]. Mining Safety & Environmental Protection, 2022, 49(1): 8-13, 19. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER202201002.htm
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  10
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-28
  • 修回日期:  2023-09-28
  • 刊出日期:  2024-03-20

目录

    /

    返回文章
    返回