留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

模态自适应的红外与可见光图像融合

曲海成 王宇萍 高健康 赵思琪

曲海成, 王宇萍, 高健康, 赵思琪. 模态自适应的红外与可见光图像融合[J]. 红外技术, 2022, 44(3): 268-276.
引用本文: 曲海成, 王宇萍, 高健康, 赵思琪. 模态自适应的红外与可见光图像融合[J]. 红外技术, 2022, 44(3): 268-276.
QU Haicheng, WANG Yuping, GAO Jiankang, ZHAO Siqi. Mode Adaptive Infrared and Visible Image Fusion[J]. Infrared Technology , 2022, 44(3): 268-276.
Citation: QU Haicheng, WANG Yuping, GAO Jiankang, ZHAO Siqi. Mode Adaptive Infrared and Visible Image Fusion[J]. Infrared Technology , 2022, 44(3): 268-276.

模态自适应的红外与可见光图像融合

基金项目: 

辽宁省教育厅一般项目 LJ2019JL010

辽宁工程技术大学学科创新团队资助项目 LNTU20TD-23

详细信息
    作者简介:

    曲海成(1981-),男,博士,副教授,主要研究方向:图像与智能信息处理。E-mail:quhaicheng@lntu.edu.cn

  • 中图分类号: TP391

Mode Adaptive Infrared and Visible Image Fusion

  • 摘要: 为解决低照度和烟雾等恶劣环境条件下融合图像目标对比度低、噪声较大的问题,提出一种模态自适应的红外与可见光图像融合方法(mode adaptive fusion, MAFusion)。首先,在生成器中将红外图像与可见光图像输入自适应加权模块,通过双流交互学习二者差异,得到两种模态对图像融合任务的不同贡献比重;然后,根据各模态特征的当前特性自主获得各模态特征的相应权重,进行加权融合得到融合特征;最后,为了提高模型的学习效率,补充融合图像的多尺度特征,在图像融合过程中加入残差块与跳跃残差组合模块,提升网络性能。在TNO和KAIST数据集上进行融合质量测评,结果表明:主观评价上,提出的方法视觉效果良好;客观评价上,信息熵、互信息和基于噪声的评价性能指标均优于对比方法。
  • 图  1  残差块结构图

    Figure  1.  Residual block structure

    图  2  生成器网络结构图

    Figure  2.  Structure diagram of generator network

    图  3  判别器网络结构图

    Figure  3.  Structure diagram of generator network

    图  4  自适应加权模块结构图

    Figure  4.  Adaptive weighted fusion module structure diagram

    图  5  残差块及跳跃连接组合模块

    Figure  5.  Combined module of residual block and jump connection

    图  6  KAIST数据集中“道路与行人”融合结果

    Figure  6.  Fusion results of "road and people" in KAIST dataset

    图  7  TNO数据集中“烟雾中的士兵”融合结果

    Figure  7.  Fusion results of "a soldier in the smog" in KAIST dataset

    图  8  TNO数据集中“士兵与车辆”融合结果

    Figure  8.  Fusion results of "soldiers and vehicles " in TNO dataset

    表  1  生成器网络整体结构

    Table  1.   Overall structure of generator network

    layer k s n1 Input n2 Output fill function
    Feature extraction l0_ir 5×5 1 1 VIS 128 Conv0_ir VALID LReLU
    l0_vis 5×5 1 1 IR 128 Conv0_vis VALID LReLU
    Adaptive weighting module L11_w_ir 3×3 1 256 Concat(Conv0_ir, Conv0_vis) 128 ir_weight SAME LReLU
    L22_w_vis 3×3 1 256 Concat(Conv0_ir, Conv0_vis) 128 vis_weight SAME LReLU
    Routine
    convolution
    Layer1 5×5 1 256 Concat[multiply(Conv0_ir, ir_weight),
    multiply(Conv0_vis, vis_weight)]
    128 Net1 VALID LReLU
    Residual block Layer2 3×3 1 128 Net1 128 Net2 SAME LReLU
    Layer3 3×3 1 128 Net2 128 Net3 SAME -
    Add1 - - - Net1/Net3 - Net1+Net3 - LReLU
    Transfer layer Layer4 3×3 1 128 LReLU(Net1+Net3) 128 Net4 SAME LReLU
    Jump residual Add2 - - - Net1/net4 - Net1+net4 - -
    Output layer Layer5 3×3 1 128 Net4 64 Net5 VALID LReLU
    Layer6 3×3 1 64 Net5 32 Net6 VALID LReLU
    Layer7 1×1 1 32 Net6 1 Fused VALID tanh
    下载: 导出CSV

    表  2  判别器网络整体结构

    Table  2.   Overall structure of discriminator network

    Layer k s n1 Input n2 Output Padding Activation function
    Conv_1 5×5 2 1 VIS/Fused 32 Net1 VALID LReLU
    Conv_2 3×3 2 32 Net1 64 Net2 VALID LReLU
    Conv_3 3×3 2 64 Net2 128 Net3 VALID LReLU
    Conv_4 3×3 2 128 Net3 256 Net4 VALID LReLU
    Line_5 - - - Net4 - Net5(6*6*256) - -
    Output - - - Net5 1 Discriminant value (1) - -
    下载: 导出CSV

    表  4  KAIST数据集“道路与行人”融合图像客观评价

    Table  4.   Objective evaluation of "road and pedestrian" fusion image in KAIST dataset

    Methods EN MI Nabf
    ADF 5.7176 11.4352 0.0782
    WLS 5.8693 11.7387 0.2129
    densefuse 6.0565 12.1129 0.0121
    U2Fusion 5.3543 10.7086 0.0809
    FusionGAN 5.8022 11.6044 0.0389
    MAFusion 6.3678 12.5356 0.0447
    Note:Bold font is the best value
    下载: 导出CSV

    表  5  KAIST数据集14组融合图像客观评价指标均值

    Table  5.   Mean value of objective evaluation of 14 groups fusion images in KAIST dataset

    Methods EN MI Nabf
    ADF 6.2336 12.4673 0.0930
    WLS 6.4248 12.8496 0.2465
    CBF 6.5413 13.0827 0.1551
    Densefuse 6.6039 13.2078 0.0223
    U2Fusion 5.9722 11.9444 0.1318
    FusionGAN 6.2516 12.5033 0.0921
    MAFusion 6.7086 13.4042 0.0562
    Note:Bold font is the best value
    下载: 导出CSV

    表  6  TNO数据集“烟雾中的士兵”融合图像客观评价

    Table  6.   Objective evaluation of "a soldier in the smog" fusion image in TNO dataset

    Methods EN MI Nabf
    ADF 6.4886 13.1772 0.104
    FusionGAN 6.3959 12.7919 0.026
    MAFusion 6.6097 13.2193 0.018
    Note:Bold font is the best value
    下载: 导出CSV

    表  7  TNO数据集“士兵与车辆”融合图像客观评价

    Table  7.   Objective evaluation of " Soldiers and vehicles " fusion image in TNO dataset

    Methods EN MI Nabf
    ADF 6.4620 12.9241 0.1582
    WLS 6.9916 13.9833 0.2652
    Densefuse 7.0227 14.0453 0.0931
    U2Fusion 7.1399 14.2797 0.4285
    FusionGAN 7.0007 14.0015 0.1093
    MAFusion 7.2017 14.4033 0.0801
    Note:Bold font is the best value
    下载: 导出CSV

    表  8  TNO数据集18组融合图像客观评价指标均值

    Table  8.   Mean value of objective evaluation of 18 groups fusion images in TNO dataset

    Methods EN MI Nabf
    ADF 6.6001 13.2003 0.0896
    WLS 6.9157 13.8314 0.2404
    CBF 6.9846 13.9697 0.3921
    Densefuse 6.9482 13.8964 0.0854
    U2Fusion 7.0457 14.0915 0.3313
    FusionGAN 6.9058 13.8116 0.0892
    MAFusion 7.0653 14.1306 0.0608
    Note:Bold font is the best value
    下载: 导出CSV

    表  9  KAIST数据集消融实验客观评价

    Table  9.   Objective evaluation of ablation experiment in KAIST dataset

    Method FusionGAN Direct stacking Two way feature extraction and adaptive weighting Ordinary convolution Residual block Jump residual block EN MI Nabf
    - - - 6.3787 12.7574 0.0921
    - - 6.5284 13.0567 0.0607
    - - 6.7086 13.4042 0.0562
    Note:Bold font is the best value
    下载: 导出CSV
  • [1] 段辉军, 王志刚, 王彦. 基于改进YOLO网络的双通道显著性目标识别算法[J]. 激光与红外, 2020, 50(11): 1370-1378. doi:  10.3969/j.issn.1001-5078.2020.11.014

    DUAN H J, WANG Z, WANG Y. Two-channel saliency object recognition algorithm based on improved YOLO network[J]. Laser & Infrared, 2020, 50(11): 1370-1378. doi:  10.3969/j.issn.1001-5078.2020.11.014
    [2] 李舒涵, 宏科, 武治宇. 基于红外与可见光图像融合的交通标志检测[J]. 现代电子技术, 2020, 43(3): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDJ202003012.htm

    LI S H, XU H K, WU Z Y. Traffic sign detection based on infrared and visible image fusion[J]. Modern Electronics Technique, 2020, 43(3): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDJ202003012.htm
    [3] Reinhard E, Adhikhmin M, Gooch B, et al. Color transfer between images[J]. IEEE Comput. Graph. Appl. , 2001, 21(5): 34-41. http://www.cs.northwestern.edu/~bgooch/PDFs/ColorTransfer.pdf
    [4] Kumar P, Mittal A, Kumar P. Fusion of thermal infrared and visible spectrum video for robust surveillance[C]// Proceedings of the Indian Conference on Computer Vision, Graphics and Image Processing, 2006: 528-539.
    [5] 常新亚, 丁一帆, 郭梦瑶. 应用整体结构信息分层匹配的红外与可见光遥感图像融合方法[J]. 航天器工程, 2020, 29(1): 100-104. doi:  10.3969/j.issn.1673-8748.2020.01.015

    CHANG X Y, DING Y F, GUO M Y. Infrared and visible image fusion method using hierarchical matching of overall structural information[J]. Spacecraft Engineering, 2020, 29(1): 100-104. doi:  10.3969/j.issn.1673-8748.2020.01.015
    [6] Bavirisetti D P, Dhuli R. Fusion of infrared and visible sensor images based on anisotropic diffusion and karhunen-loeve transform[J]. IEEE Sensors, 2016, 16(1): 203-209. doi:  10.1109/JSEN.2015.2478655
    [7] Kumar B S. Image fusion based on pixel significance using cross bilateral filter[J]. Signal Image Video Process, 2015, 9(5): 1193-1204. doi:  10.1007/s11760-013-0556-9
    [8] MA J, ZHOU Z, WANG B. Infrared and visible image fusion based on visual saliency map and weighted least square optimization[J]. Infrared Physics & Technology, 2017, 82: 8-17. https://www.sciencedirect.com/science/article/pii/S1350449516305928
    [9] LIU Y, WANG Z. Simultaneous image fusion and denoising with adaptive sparse representation[J]. IET Image Process, 2014, 9(5): 347-357. doi:  10.1049/iet-ipr.2014.0311
    [10] Burt P, Adelson E. The Laplacian pyramid as a compact image code[J]. IEEE Trans. Commun. , 1983, 31(4): 532-540. doi:  10.1109/TCOM.1983.1095851
    [11] 马雪亮, 柳慧超. 基于多尺度分析的红外与可见光图像融合研究[J]. 电子测试, 2020, 24(4): 57-58. https://www.cnki.com.cn/Article/CJFDTOTAL-WDZC202024021.htm

    MA Xueliang, LIU Huichao. Research on infrared and visible image fusion based on multiscale analysis[J]. Electronic Test, 2020, 24(4): 57-58. https://www.cnki.com.cn/Article/CJFDTOTAL-WDZC202024021.htm
    [12] LI S, YIN H, FANG L. Group-sparse representation with dictionary learning for medical image denoising and fusion[J]. IEEE Trans Biomed Eng. , 2012, 59(12): 3450-3459. doi:  10.1109/TBME.2012.2217493
    [13] Prabhakar K R, Srikar V S, Babu R V. DeepFuse: A deep unsupervised approach for exposure fusion with extreme exposure image[C]//Proc of the 2017 IEEE International Conference on Computer Vision, 2017: 4724-4732.
    [14] MA J Y, YU W, LIANG P W, et al. FusionGAN: A generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11-26. doi:  10.1016/j.inffus.2018.09.004
    [15] LI H, WU X J, Kittler J. Infrared and visible image fusion using a deep learning framework[C]//The 24th International Conference on Pattern Recognition (ICPR), 2018: 2705-2710.
    [16] LI H, WU X. DenseFuse: A fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 2019, 28(5): 2614-2623. doi:  10.1109/TIP.2018.2887342
    [17] 董安勇, 杜庆治, 苏斌, 等. 基于卷积神经网络的红外与可见光图像融合[J]. 红外技术, 2020, 42(7): 660-669. http://hwjs.nvir.cn/article/id/59ccddf6-ee9a-43da-983b-35ee872dd707

    DONG Anyong, DU Qingzhi, SU Bin, et al. Infrared and visible image fusion based on convolutional neural network[J]. Infrared Technology, 2020, 42(7): 660-669. http://hwjs.nvir.cn/article/id/59ccddf6-ee9a-43da-983b-35ee872dd707
    [18] XU Han, MA Jiayi, JIANG Junjun, et al. U2Fusion: A unified unsupervised image fusion network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 44: 502-518.
    [19] Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems, 2014: 2672-2680.
    [20] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 770-778.
    [21] Figshare. TNO Image Fusion Dataset[OL]. [2018-09-15]. https://flgshare.com/articles/TNOImageFusionDataset/1008029.
    [22] Hwang S, Park J, Kim N, et al. Multispectral pedestrian detection: benchmark dataset and baseline[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015: 1037-1045.
    [23] Roberts J W, Aardt J V, Ahmed F. Assessment of image fusion procedures using entropy, image quality, and multispectral classification[J]. Appl. Remote Sens. , 2008, 2(1): 023522-023522-28. doi:  10.1117/1.2945910
    [24] QU G, ZHANG D, YAN P. Information measure for performance of image fusion[J]. Electron Lett. , 2002, 38(7): 313-315. doi:  10.1049/el:20020212
    [25] Kumar B K S. Multifocus and multispectral image fusion based on pixel significance using discrete cosine harmonic wavelet transform[J]. Signal, Image and Video Processing, 2013, 7(6): 1125-1143. doi:  10.1007/s11760-012-0361-x
  • 加载中
图(8) / 表(8)
计量
  • 文章访问数:  197
  • HTML全文浏览量:  118
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-18
  • 修回日期:  2021-09-23
  • 刊出日期:  2022-03-20

目录

    /

    返回文章
    返回