留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可见光和红外图像决策级融合目标检测算法

宁大海 郑晟

宁大海, 郑晟. 可见光和红外图像决策级融合目标检测算法[J]. 红外技术, 2023, 45(3): 282-291.
引用本文: 宁大海, 郑晟. 可见光和红外图像决策级融合目标检测算法[J]. 红外技术, 2023, 45(3): 282-291.
NING Dahai, ZHENG Sheng. An Object Detection Algorithm Based on Decision-Level Fusion of Visible and Infrared Images[J]. Infrared Technology , 2023, 45(3): 282-291.
Citation: NING Dahai, ZHENG Sheng. An Object Detection Algorithm Based on Decision-Level Fusion of Visible and Infrared Images[J]. Infrared Technology , 2023, 45(3): 282-291.

可见光和红外图像决策级融合目标检测算法

详细信息
    作者简介:

    宁大海(1998-),男,山西运城人,硕士研究生,主要从事图像处理的研究

    通讯作者:

    郑晟(1964-),男,山西太原人,副教授,主要从事智能控制技术和装置的研究。E-mail: 13593162661@163.com

  • 中图分类号: TP391.41

An Object Detection Algorithm Based on Decision-Level Fusion of Visible and Infrared Images

  • 摘要: 为了提高可见光和红外图像决策级融合目标检测算法的性能,提出了一种基于模型可靠性的决策级融合策略。首先采取图像预处理技术提高红外图像的整体质量,之后对可见光与热红外目标检测模型分别进行训练测试,根据模型测试结果得到融合策略所需参数,依据所提出的融合策略对模型检测结果进行融合,得到最后的融合检测结果。实验结果表明,相比于单一目标检测模型的检测结果,所采用的融合算法在白天的漏检率比可见光检测模型降低了8.16%,夜间漏检率比红外检测模型降低了9.85%。
  • 图  1  本文算法总体框架

    Figure  1.  General framework of our algorithm

    图  2  可见光与红外图像灰度直方图对比

    Figure  2.  Comparison of gray histogram between visible image and infrared image

    图  3  HE与CLAHE的效果对比图

    Figure  3.  Effect comparison diagram of HE and CLAHE

    图  4  引导滤波参数ε与平均梯度,PSNR的关系

    Figure  4.  Relationship between guiding filter parameters ε and average gradient, PSNR

    图  5  检测结果对比图

    Figure  5.  Comparison diagram of test results

    图  6  PP-YOLOE和其他最先进模型的比较

    Figure  6.  Comparison of the PP-YOLOE and other state-of-the-art models

    图  7  图像配准。左:可见光图像; 中:红外图像; 右:配准后的红外图像

    Figure  7.  Image registration. Left: visible image; Middle: infrared image; Right: infrared image after registration

    图  8  三个模型的训练损失曲线

    Figure  8.  Training loss curve of three models

    图  9  图像预处理前后模型性能对比结果

    Figure  9.  Comparison results of model performance before and after image preprocessing

    图  10  融合策略对比结果

    Figure  10.  Comparison results of fusion strategies

    图  11  检测结果可视化

    Figure  11.  Visualization of test results

    表  1  消融实验结果

    Table  1.   Ablation experiment results

    Preprocessed Primary fusion strategy DIOU Reliability parameter AMR(Night)↓ AMR(Day)↓
    37.63%(Visible) 30.29%(Visible)
    30.27%(Infrared) 36.23%(Infrared)
    27.51%(Infrared) 33.44%(Infrared)
    22.14% 25.31%
    21.06% 23.17%
    20.42% 22.13%
    下载: 导出CSV
  • [1] LIN C, LU J, WANG G, et al. Graininess-aware deep feature learning for robust pedestrian detection[J]. IEEE Transactions on Image Processing, 2020, 29: 3820-3834. doi:  10.1109/TIP.2020.2966371
    [2] ZHANG X, YE P, LEUNG H, et al. Object fusion tracking based on visible and infrared images: a comprehensive review[J]. Information Fusion, 2020, 63: 166-187. doi:  10.1016/j.inffus.2020.05.002
    [3] 唐聪, 凌永顺, 杨华, 等. 基于深度学习的红外与可见光决策级融合跟踪[J]. 激光与光电子学进展, 2019, 56(7): 217-224. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201907023.htm

    TANG Cong, LING Yongshun, YANG Hua, et al. Decision-Level fusion tracking for infrared and visible spectra based on deep learning[J]. Laser & Optoelectronics Progress, 2019, 56(7): 217-224. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201907023.htm
    [4] 张芳芳. 红外和可见光图像融合算法的研究[D]. 洛阳: 河南科技大学, 2011.

    ZHANG Fangfang. The Study of Infrared and Visible Light Image Fusion Algorithm[D]. Luoyang: Henan University of Science and Technology, 2011.
    [5] Schnelle S R, Chan A L. Enhanced target tracking through infrared-visible image fusion[C]//14th International Conference on Information Fusion, IEEE, 2011: 1-8.
    [6] 刘明君, 董增寿. 基于多特征的红外与可见光图像融合[J]. 激光杂志, 2019, 40(10): 81-85. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ201910017.htm

    LIU Mingjun, DONG Zengshou. Infrared and visible light image fusion based on multiple features[J]. Laser Journal, 2019, 40(10): 81-85. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ201910017.htm
    [7] 白玉, 侯志强, 刘晓义, 等. 基于可见光图像和红外图像决策级融合的目标检测算法[J]. 空军工程大学学报: 自然科学版, 2020, 21(6): 53-59, 100. doi:  10.3969/j.issn.1009-3516.2020.06.009

    BAI Yu, HOU Zhiqiang, LIU Xiaoyi, et al. An object detection algorithm based on decision-level fusion of visible light image and infrared image[J]. Journal of Air Force Engineering University, 2020, 21(6): 53-59, 100. doi:  10.3969/j.issn.1009-3516.2020.06.009
    [8] Manpreet Kaur, Jasdeep Kaur, Jappreet Kaur. Survey of contrast enhancement techniques based on histogram equalization[J]. International Journal of Advanced Computer Science and Applications, 2011, 2(7): 137-141.
    [9] Stark J Alex. Adaptive image contrast enhancement using generalizations of histogram equalization[J]. IEEE Transactions on Image Processing, 2000, 9(5): 889-889. doi:  10.1109/83.841534
    [10] 张丽. 对比度受限自适应直方图均衡方法[J]. 电脑知识与技术, 2010, 6(9): 2238-2241. doi:  10.3969/j.issn.1009-3044.2010.09.082

    ZHANG Li. Contrast limited adaptive histogram equalization[J]. Computer Knowledge and Technology, 2010, 6(9): 2238-2241. doi:  10.3969/j.issn.1009-3044.2010.09.082
    [11] 王加, 周永康, 李泽民, 等. 非制冷红外图像降噪算法综述[J]. 红外技术, 2021, 43(6): 557-565. http://hwjs.nvir.cn/article/id/380dcf6e-de3d-4411-ab70-e246d5c8ea27

    WANG Jia, ZHOU Yongkan, LI Zemin, et al. A survey of uncooled infrared image denoising algorithms[J]. Infrared Technology, 2021, 43(6): 557-565. http://hwjs.nvir.cn/article/id/380dcf6e-de3d-4411-ab70-e246d5c8ea27
    [12] Tomasi C, Manduchi R. Bilateral filtering for gray and color images[C]//6th International Conference on Computer Vision, IEEE, 1998: 839-846.
    [13] HE K, SUN J, TANG X. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(12): 2341-2353.
    [14] 唐聪, 凌永顺, 杨华, 等. 基于深度学习的红外与可见光决策级融合检测(英文)[J]. 红外与激光工程, 2019, 48(6): 456-470. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201906045.htm

    TANG Cong, LING Yongshun, YANG Hua, et al. Decision-level fusion detection for infrared and visible spectra based on deep learning[J]. Infrared and Laser Engineering, 2019, 48(6): 456-470. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201906045.htm
    [15] Paddle Paddle. Paddle Detection, Object detection and instance segmentation toolkit based on PaddlePaddle[EB/OL]. [2022-08-01]. https://github.com/PaddlePaddle/PaddleDetection.
    [16] XU S, WANG X, LV W, et al. PP-YOLOE: An evolved version of YOLO[J/OL]. arXiv preprint arXiv: 2203.16250, https://arxiv.org/p-df/2203.16250.pdf.
    [17] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: Faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000.
    [18] Hwang S, Park J, Kim N, et al. Multispectral pedestrian detection: Benchmark dataset and baseline[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1037-1045.
    [19] LI C, SONG D, TONG R, et al. Illumination-aware faster R-CNN for robust multispectral pedestrian detection[J]. Pattern Recognition, 2019, 85: 161-171.
    [20] LI C, SONG D, TONG R, et al. Multispectral pedestrian detection via simultaneous detection and segmentation[J/OL]. arXiv preprint arXiv: 1808.04818, https://arxiv.org/pdf/1808.04818.pdf.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  356
  • HTML全文浏览量:  113
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-01
  • 修回日期:  2022-09-13
  • 刊出日期:  2023-03-20

目录

    /

    返回文章
    返回