留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于显著性的多波段图像同步融合方法

余东 蔺素珍 禄晓飞 李大威 王彦博

余东, 蔺素珍, 禄晓飞, 李大威, 王彦博. 基于显著性的多波段图像同步融合方法[J]. 红外技术, 2022, 44(10): 1095-1102.
引用本文: 余东, 蔺素珍, 禄晓飞, 李大威, 王彦博. 基于显著性的多波段图像同步融合方法[J]. 红外技术, 2022, 44(10): 1095-1102.
YU Dong, LIN Suzhen, LU Xiaofei, LI Dawei, WANG Yanbo. Saliency-based Multiband Image Synchronization Fusion Method[J]. Infrared Technology , 2022, 44(10): 1095-1102.
Citation: YU Dong, LIN Suzhen, LU Xiaofei, LI Dawei, WANG Yanbo. Saliency-based Multiband Image Synchronization Fusion Method[J]. Infrared Technology , 2022, 44(10): 1095-1102.

基于显著性的多波段图像同步融合方法

详细信息
    作者简介:

    余东(1995-),男,硕士研究生,研究方向为图像融合,E-mail:844913898@qq.com

    通讯作者:

    蔺素珍(1966-),女,教授,博士,硕士生导师,研究方向为红外弱小目标检测,图像融合,E-mail:lsz@nuc.edu.cn

  • 中图分类号: TP391.41

Saliency-based Multiband Image Synchronization Fusion Method

  • 摘要: 针对多波段融合图像存在对比度低、显著目标不突出的问题,本文提出了一种基于显著性的多波段图像同步融合方法。首先,近红外图像被用来作为数据保真项,红外图像和可见光图像分别为融合结果提供红外显著信息和细节信息;其次,基于视觉显著的红外显著区域提取方法被用来构造权重图,以克服融合结果显著区域不突出和边缘模糊问题;最后,采用交替方向乘子法(alternating direction method of multipliers, ADMM)来求解模型,得到融合结果。研究结果表明,较于代表性图像融合算法,所提算法能在保留红外图像热辐射信息的同时,保有较好的清晰细节,并在多项客观评价指标上优于代表性算法。
  • 图  1  显著区域权重图和背景区域权重图

    Figure  1.  Salient area weight map and background area weight map

    图  2  不同w1w2取值融合结果

    Figure  2.  Fusion results of different w1 and w2 values

    图  3  “Kaptein_1123”图像融合结果

    Figure  3.  Fusion results on "Kaptein_1123" image

    图  4  “Movie_01”图像融合结果

    Figure  4.  Fusion results on "Movie_01" image

    图  5  “soldier_behind_smoke”图像融合结果

    Figure  5.  Fusion results on "soldier_behind_smoke" image

    图  6  “Marne_04”图像融合结果

    Figure  6.  Fusion results on "Marne_04" image

    图  7  “Marne_06”图像融合结果

    Figure  7.  Fusion results on "Marne_06" image

    表  1  图 2中虚线区域客观评价指标

    Table  1.   The quantitative comparisons of the region surrounded by the dotted line in Fig. 2

    $ {w_1} $ $ {w_2} $ EN C PSNR SSIM CC AG MI
    0.5 0.1 6.891 26.469 38.267 0.265 0.436 2.972 5.784
    0.5 6.893 26.083 38.565 0.329 0.435 2.417 5.501
    0.7 6.910 25.882 38.692 0.357 0.433 2.227 5.309
    0.7 0.5 6.767 23.654 39.580 0.319 0.439 3.281 5.185
    0.7 6.813 24.208 39.417 0.346 0.437 3.194 5.047
    1.3 6.887 24.928 39.018 0.421 0.431 2.966 4.656
    1.3 0.7 6.320 16.222 34.579 0.289 0.434 2.622 4.445
    1.3 6.444 17.739 36.047 0.366 0.432 2.515 4.225
    2 6.579 19.452 37.359 0.439 0.426 2.495 3.963
    2 1.3 6.003 11.476 29.331 0.270 0.414 2.138 3.814
    2 6.128 12.831 30.582 0.336 0.415 2.096 3.648
    2.5 6.217 13.862 31.478 0.380 0.413 2.095 3.532
    2.5 2 5.895 10.012 27.508 0.272 0.399 1.944 3.453
    2.5 5.978 10.794 28.226 0.310 0.401 1.932 3.362
    下载: 导出CSV

    表  2  各算法评价指标

    Table  2.   Evaluation indexes of ten algorithms

    Image Metrics GTF DTCWT NSST_NSCT ADF MDDR Dual Branch U2Fusion Fusion GAN Proposed
    Kaptein_1123 SD 37.34 39.87 35.41 38.04 50.55 24.34 41.50 27.98 45.95
    EN 6.94 6.89 6.83 6.79 7.20 6.48 7.04 6.33 7.24
    C 23.93 28.41 25.16 27.39 36.39 17.55 30.57 15.44 33.39
    MI 3.38 2.96 2.57 3.36 3.29 2.61 2.58 3.43 3.50
    SSIM 0.45 0.43 0.44 0.48 0.53 0.21 0.37 0.20 0.57
    SF 7.08 9.55 10.30 5.91 8.42 4.79 11.56 3.94 7.64
    Movie_01 SD 39.01 34.80 31.53 33.79 40.70 17.11 35.43 23.50 51.44
    EN 6.77 6.49 6.39 6.35 6.51 5.98 6.94 5.95 6.84
    C 31.05 23.52 20.65 22.91 26.77 12.89 23.99 13.92 35.06
    MI 5.03 3.94 3.27 4.58 3.72 2.87 2.88 3.54 4.47
    SSIM 0.16 0.19 0.21 0.32 0.32 0.05 0.19 0.10 0.53
    SF 3.32 9.77 10.13 10.27 7.13 4.44 11.73 2.64 5.30
    soldier_behind_smoke SD 42.88 27.90 24.89 26.18 30.61 35.13 35.26 24.93 45.24
    EN 7.26 6.74 6.61 6.62 6.92 6.97 7.14 6.35 7.35
    C 32.82 21.48 18.09 20.82 24.36 26.46 28.03 15.37 35.74
    MI 3.48 2.51 1.86 3.12 1.97 3.53 1.80 2.33 3.16
    SSIM 0.44 0.21 0.27 0.19 0.34 0.02 0.27 0.32 0.47
    SF 8.93 11.43 12.61 9.78 10.35 8.18 13.21 5.18 8.01
    Marne_04 SD 53.09 26.60 24.47 25.06 31.79 26.51 49.42 25.06 53.57
    EN 7.57 6.69 6.63 6.58 6.99 6.54 7.60 6.58 7.62
    C 47.65 20.95 18.69 19.74 24.63 19.72 40.38 19.74 43.29
    MI 4.54 2.41 1.76 2.72 2.30 3.13 1.88 2.72 3.40
    SSIM 0.21 0.26 0.26 0.20 0.36 0.29 0.22 0.20 0.54
    SF 5.73 7.66 8.34 6.17 7.14 3.38 10.77 6.17 7.46
    Marne_06 SD 47.39 27.90 25.76 26.78 34.65 28.29 46.15 46.67 53.53
    EN 7.30 6.77 6.70 6.70 7.05 6.67 7.48 7.33 7.59
    C 35.68 22.07 20.34 21.26 28.08 21.05 36.61 35.07 42.88
    MI 4.26 2.95 2.31 3.23 2.69 2.74 2.48 3.07 3.46
    SSIM 0.30 0.37 0.35 0.31 0.37 0.11 0.30 0.23 0.57
    SF 6.05 7.00 7.66 4.74 6.44 3.82 10.15 5.95 5.27
    下载: 导出CSV
  • [1] LIU Y, LIU S, WANG Z. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 2015, 24: 147-164. doi:  10.1016/j.inffus.2014.09.004
    [2] YU B, JIA B, DING L, et al. Hybrid dual-tree complex wavelet transform and support vector machine for digital multi-focus image fusion[J]. Neurocomputing, 2016, 182: 1-9. doi:  10.1016/j.neucom.2015.10.084
    [3] LIN S, HAN Z, LI D, et al. Integrating model-and data-driven methods for synchronous adaptive multi-band image fusion[J]. Information Fusion, 2020, 54: 145-160. doi:  10.1016/j.inffus.2019.07.009
    [4] ZHANG H, LE Z, SHAO Z, et al. MFF-GAN: an unsupervised generative adversarial network with adaptive and gradient joint constraints for multi-focus image fusion[J]. Information Fusion, 2021, 66: 40-53. doi:  10.1016/j.inffus.2020.08.022
    [5] Toet A. Image fusion by a ratio of low-pass pyramid[J]. Pattern Recognition Letters, 1989, 9(4): 245-253. doi:  10.1016/0167-8655(89)90003-2
    [6] Lewis J J, O'Callaghan R J, Nikolov S G, et al. Pixel-and region-based image fusion with complex wavelets[J]. Information Fusion, 2007, 8(2): 119-130. doi:  10.1016/j.inffus.2005.09.006
    [7] Nencini F, Garzelli A, Baronti S, et al. Remote sensing image fusion using the curvelet transform[J]. Information Fusion, 2007, 8(2): 143-156. doi:  10.1016/j.inffus.2006.02.001
    [8] Vishwakarma A, Bhuyan M K. Image fusion using adjustable non-subsampled shearlet transform[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 68(9): 3367-3378.
    [9] LI H, CEN Y, LIU Y, et al. Different input resolutions and arbitrary output resolution: a meta learning-based deep framework for infrared and visible image fusion[J]. IEEE Transactions on Image Processing, 2021, 30: 4070-4083. doi:  10.1109/TIP.2021.3069339
    [10] ZHANG H, LE Z, SHAO Z, et al. MFF-GAN: an unsupervised generative adversarial network with adaptive and gradient joint constraints for multi-focus image fusion[J]. Information Fusion, 2021, 66: 40-53. doi:  10.1016/j.inffus.2020.08.022
    [11] MA J, LE Z, TIAN X, et al. SMFuse: multi-focus image fusion via self-supervised mask-optimization[J]. IEEE Transactions on Computational Imaging, 2021, 7: 309-320. doi:  10.1109/TCI.2021.3063872
    [12] WANG B, ZHAO Q, BAI G, et al. LIALFP: multi-band images synchronous fusion model based on latent information association and local feature preserving[J]. Infrared Physics & Technology, 2022, 120: 103975.
    [13] NIE R, MA C, CAO J, et al. A total variation with joint norms for infrared and visible image fusion[J]. IEEE Transactions on Multimedia, 2021, 24: 1460-1472.
    [14] MA J, CHEN C, LI C, et al. Infrared and visible image fusion via gradient transfer and total variation minimization[J]. Information Fusion, 2016, 31: 100-109. doi:  10.1016/j.inffus.2016.02.001
    [15] MA Y, CHEN J, CHEN C, et al. Infrared and visible image fusion using total variation model[J]. Neurocomputing, 2016, 202: 12-19. doi:  10.1016/j.neucom.2016.03.009
    [16] WANG B, BAI G, LIN S, et al. A novel synchronized fusion model for multi-band images[J]. IEEE Access, 2019, 7: 139196-139211. doi:  10.1109/ACCESS.2019.2943660
    [17] Ng M K, WANG F, YUAN X, et al. Inexact alternating direction methods for image recovery[J]. SIAM Journal on Scientific Computing, 2011, 33(4): 1643-1668. doi:  10.1137/100807697
    [18] Moonon A U, HU J. Multi-focus image fusion based on NSCT and NSST[J]. Sensing and Imaging, 2015, 16(1): 1-16. doi:  10.1007/s11220-014-0103-y
    [19] Bavirisetti D P, Dhuli R. Fusion of infrared and visible sensor images based on anisotropic diffusion and Karhunen-Loeve transform[J]. IEEE Sensors Journal, 2015, 16(1): 203-209.
    [20] FU Y, WU X J. A dual-branch network for infrared and visible image fusion[C]//25th International Conference on Pattern Recognition (ICPR) of IEEE, 2021: 10675-10680.
    [21] XU H, MA J, JIANG J, et al. U2Fusion: A unified unsupervised image fusion network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 44(1): 502-518.
    [22] MA J, YU W, LIANG P, et al. FusionGAN: a generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11-26. doi:  10.1016/j.inffus.2018.09.004
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  34
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-16
  • 修回日期:  2022-04-25
  • 刊出日期:  2022-10-20

目录

    /

    返回文章
    返回