留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

类果蝇复眼视觉神经计算建模及仿生应用研究综述

章盛 沈洁 郑胜男 施建强

章盛, 沈洁, 郑胜男, 施建强. 类果蝇复眼视觉神经计算建模及仿生应用研究综述[J]. 红外技术, 2023, 45(3): 229-240.
引用本文: 章盛, 沈洁, 郑胜男, 施建强. 类果蝇复眼视觉神经计算建模及仿生应用研究综述[J]. 红外技术, 2023, 45(3): 229-240.
ZHANG Sheng, SHEN Jie, ZHENG Shengnan, SHI Jianqiang. Research Review of Drosophila-like Compound Eye Visual Neural Computational Modeling and Bionic Applications[J]. Infrared Technology , 2023, 45(3): 229-240.
Citation: ZHANG Sheng, SHEN Jie, ZHENG Shengnan, SHI Jianqiang. Research Review of Drosophila-like Compound Eye Visual Neural Computational Modeling and Bionic Applications[J]. Infrared Technology , 2023, 45(3): 229-240.

类果蝇复眼视觉神经计算建模及仿生应用研究综述

基金项目: 

国家自然科学基金资助项目 61903124

国家自然科学基金资助项目 51979085

详细信息
    作者简介:

    章盛(1989-),男,安徽芜湖人,博士研究生,主要从事图像信息处理与仿生技术方面研究。E-mail: 18365393973@163.com

  • 中图分类号: TP391

Research Review of Drosophila-like Compound Eye Visual Neural Computational Modeling and Bionic Applications

  • 摘要: 随着类果蝇复眼视觉神经计算建模技术的快速发展,如何提高运动目标的实时检测追踪等仿生应用能力成为类果蝇复眼视觉神经领域的研究难题,所以研究类果蝇复眼视觉神经计算建模及其仿生应用具有非常重要的意义。类果蝇复眼视觉神经系统是一个高度平行的专用视觉神经网络模型,并具有适度的复杂性以允许快速进行视觉信息处理。本文首先从类果蝇复眼的生理结构、感光细胞的光电转换、视叶神经的加工处理、中央脑的认知抉择4个部分详细阐述类果蝇复眼视觉神经计算建模的研究现状,然后介绍类果蝇复眼视觉神经计算建模在军事与民用领域的典型仿生应用,最后展望了类果蝇复眼视觉神经计算建模的发展趋势与挑战。
  • 图  1  类果蝇复眼视觉神经模型的通路图[13]

    Figure  1.  Pathway diagram of the visual neural model in the Drosophila-like compound eye[13]

    图  2  类果蝇复眼视觉神经通路与图像/视频信息处理对应关系图

    Figure  2.  Corresponding diagram between the visual pathway of the Drosophila-like compound eye and the image/video information processing

    图  3  类果蝇复眼生理结构示意图[16]

    Figure  3.  Physiological structure schematic diagram of the Drosophila-like compound eye[16]

    图  4  并列与重叠模型复眼光学成像示意图[18]

    Figure  4.  Schematic diagram of the parallel and the overlapping compound eye optical imaging[18]

    图  5  国外人工仿生复眼光学成像模型

    Figure  5.  Foreign artificial bionic compound eye optical imaging model

    图  6  国内人工仿生复眼光学成像模型

    Figure  6.  Domestic artificial bionic compound eye optical imaging model

    图  7  类果蝇单眼的结构模式图[36]

    Figure  7.  Structural pattern diagram of the single eye in Drosophila-like[36]

    图  8  类果蝇视叶神经的结构模式图[37]

    Figure  8.  Structural pattern diagram of the optic nerve in drosophila-like[37]

    图  9  类果蝇复眼运动神经网络模型的示意图

    Figure  9.  Schematic diagram of the movement neural network model in Drosophila-like compound eye

    图  10  类果蝇大脑三维模拟图[51]

    Figure  10.  Three-dimensional simulation diagram of the brain in Drosophila-like[51]

    图  11  类果蝇的中央脑结构纵截面图[52]

    Figure  11.  Longitudinal section diagram of the central brain structure in Drosophila-like[52]

    图  12  偏振光导航仪的原理示意图[56]

    Figure  12.  Principle schematic diagram of the polarized light navigator[56]

    图  13  空对地计速仪的原理示意图[57]

    Figure  13.  Principle schematic diagram of the air-to-ground speedometer[57]

    图  14  复眼导弹制导装置[58]

    Figure  14.  Missile guidance device of the compound eye[58]

    图  15  安装在机器人CurvACE复眼模块[16]

    Figure  15.  Installed in the CurvACE compound eye module of the robot[16]

    图  16  复眼医学成像设备的结构示意图[60]

    Figure  16.  Structure schematic diagram of the compound eye medical imaging equipment[60]

    图  17  目标检测追踪示意图

    Figure  17.  Schematic diagram of the target detection and tracking

  • [1] 巩宪伟, 鱼卫星, 张红鑫, 等. 仿生复眼成像系统设计与制作的研究进展[J]. 中国光学, 2013, 6(1): 34- 45. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201301007.htm

    GONG Xianwei, YU Weixing, ZHANG Hongxin, et al. Progress in design and fabrication of artificial compound eye optical systems[J]. Chinese Optics, 2013, 6(1): 34-45. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201301007.htm
    [2] 王汉熙, 张进, 易茂祥, 等. 复眼技术专利结构分析[J]. 武汉理工大学学报, 2018, 40(2): 106-112. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201802018.htm

    WANG Hanxi, ZHANG Jin, YI Maoxiang, et al. Analysis of patent structure of compound eye technology[J]. Journal of Wuhan University of Technology, 2018, 40(2): 106-112. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201802018.htm
    [3] 王申奥, 王汉熙. "人造复眼"英文学术文献展现的学术研究整体态势[J]. 武汉理工大学学报, 2020, 42(2): 90-102. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY202002016.htm

    WANG Shenao, WANG Hanxi. Academic research situation and development direction of the artificial compound eye in English academic literature[J]. Journal of Wuhan University of Technology, 2020, 42(2): 90-102. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY202002016.htm
    [4] 吴慧娟, 陈晓江, 王汉熙. "复眼系统"中文学术文献展现的整体态势与发展方向[J]. 武汉理工大学学报, 2020, 42(3): 97-108. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY202003018.htm

    WU Huijuan, CHEN Xiaojiang, WANG Hanxi. The overall situation and development direction of Chinese academic research in compound eye system[J]. Journal of Wuhan University of Technology, 2020, 42(3): 97-108. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY202003018.htm
    [5] 周同林, 王汉熙. 人工复眼应用领域探索分析[J]. 武汉理工大学学报, 2020, 42(7): 92-108. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY202007016.htm

    ZHOU Tonglin, WANG Hanxi. Research and analysis of artificial compound eye application field[J]. Journal of Wuhan University of Technology, 2020, 42(7): 92-108. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY202007016.htm
    [6] Hodierna D G. L'Occhio Della Mosca[M]. Decio Cirillo: Palermo, 1664.
    [7] Miiller J. Zur Vergleichenden Physiologie Des Gesichtssinnes Des Menschen Und Der Thiere[M]. Cnobloch, Leipzig & wien, 1826.
    [8] EXNER S. Die Physiologie Der Facettirten Augen Von Krebsen Und Insecten[M]. Franz Deuticke, Leipzig & wien, 1891.
    [9] 周常河, 刘立人, 王之江. Hartline侧抑制神经网络模型的光学实现[J]. 光学学报, 1992, 12(5): 451-456. doi:  10.3321/j.issn:0253-2239.1992.05.014

    ZHOU Changhe, LIU Liren, WANG Zhijiang. Optical implementation of Hartline lateral inhibition model[J]. Acta Optica Sinica, 1992, 12(5): 451-456. doi:  10.3321/j.issn:0253-2239.1992.05.014
    [10] 吴卫国, 徐智敏, 石淑珍, 等. 神经重叠复眼感杆光导的模式与性特化光感受器[J]. 生物物理学报, 1989, 5(3): 298-303. https://www.cnki.com.cn/Article/CJFDTOTAL-SWWL198903013.htm

    WU Weiguo, XU Zhimin, SHI Shuzhen, et al. The patterns of light guide within the rhabdomere and sex-soecific photoreceptor in the neural superposintion compound eye[J]. Acta Biophysica Sinica, 1989, 5(3): 298-303. https://www.cnki.com.cn/Article/CJFDTOTAL-SWWL198903013.htm
    [11] KUNZE P, HAUSEN K. Inhomogeneous refractive index in the crystalline cone of a moth eye[J]. Nature, 1971, 231: 392-393. doi:  10.1038/231392a0
    [12] TANG S, WOLF R, XU S, et al. Visual pattern recognition in Drosophila is invariant for retinal position[J]. Science, 2004, 305: 1020-1022. doi:  10.1126/science.1099839
    [13] 徐梦溪, 施建强. 仿生复眼型多源监测数据融合与专题信息提取[J]. 水利信息化, 2021(1): 71-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSW202101015.htm

    XU Mengxi, SHI Jianqiang. Bionic compound eye based multi-source monitoring data fusion and thematic information extraction[J]. Water Resources Infromatization, 2021(1): 71-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSW202101015.htm
    [14] 郭爱克, 张柯, 郭建增, 等. 果蝇的视觉认知研究[J]. 中国基础科学, 2008(1): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJB200801019.htm

    GUO Aike, ZHANG Ke, GUO Jianzeng, et al. Visual cognition in drosophila brain[J]. China Basic Science, 2008(1): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJB200801019.htm
    [15] 郭爱克, 彭岳清, 张柯, 等. 小虫春秋: 果蝇的视觉学习记忆与认知[J]. 自然杂志, 2009, 31(2): 63-68. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ200902000.htm

    GUO Aike, PENG Yueqin, ZHANG Ke, et al. Insect behavior : visual cognition in fruit fly[J]. Chinese Journal of Nature, 2009, 31(2): 63-68. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ200902000.htm
    [16] Pericet C R, Dobrzynski M, Eplattenier G L, et al. CURVACE-CURVed artificial compound eyes[J]. Procedia Computer Science, 2011, 7: 308- 309. doi:  10.1016/j.procs.2011.09.040
    [17] 李娜娜. 重叠型复眼光学系统的研究[D]. 长春: 长春理工大学, 2010.

    LI Nana. Study of the Superposition Compound Eye Optical System[D]. Changchun: Changchun University of Science and Technology, 2010.
    [18] 史成勇. 仿生曲面复眼系统设计及其图像处理研究[D]. 长春: 中国科学院大学, 2017.

    SHI Chengyong. Research on the Design and Image Process of Bioinspired Spherical Compound Eye Imaging System[D]. Changchun: Chinese Academy of Science, 2017.
    [19] Tanida J, Kumagai T, Yamada K, et al. Thin observation module by bound optics (TOMBO): concept and experimental verification[J]. Applied Optics, 2001, 40(11): 1806-1813. doi:  10.1364/AO.40.001806
    [20] Duparre J, Dannberg P, Schreiber P, et al. Artificial apposition compound eye fabricated by micro-optics technology[J]. Applied Optics, 2004, 43(22): 4303-4310. doi:  10.1364/AO.43.004303
    [21] Duparre J, Radtke D, Tunnermann A. Spherical artificial compound eye captures real images[C]// Proceedings of SPIE, 2007, 6466: 64660K -1 - 64660K-9.
    [22] Afshari H, Jacques L, Bagnato L, et al. The PANOPTIC camera: a plenoptic sensor with real-time omnidirectional capability[J]. Journal of Signal Processing Systems, 2013, 70: 305-328. doi:  10.1007/s11265-012-0668-4
    [23] 吴梅英, Mclntyre P D. 萤火虫复眼光学模型重叠成象的研究与模拟[J]. 生物化学与生物物理进展, 1994, 21(6): 535-539. https://www.cnki.com.cn/Article/CJFDTOTAL-SHSW406.014.htm

    WU Meiying, Mclntyre P D. Study and simulation of overlapping image of firefly compound eye optical model[J]. Progress in Biochemistry and Biophysics, 1994, 21(6): 535-539. https://www.cnki.com.cn/Article/CJFDTOTAL-SHSW406.014.htm
    [24] 吴梅英, 田丽娟, 彭连惠. 北京萤火虫复眼的光学成像[J]. 昆虫学报, 1993, 36(2): 158-161. https://www.cnki.com.cn/Article/CJFDTOTAL-KCXB199302004.htm

    WU Meiying, TIAN Lijuan, PENG Lianhui. The optical imaging of compound eye of Beijing firefly phrococelia pekinensis[J]. Acta Entomologica Sinica, 1993(2): 158-161. https://www.cnki.com.cn/Article/CJFDTOTAL-KCXB199302004.htm
    [25] 吴梅英, MCLNTYRE P D. 北京萤火虫复眼的梯度折射率光学和光线追迹[J]. 科学通报, 1994, 39(18): 1705-1708. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199418018.htm

    WU Meiying, Mclntyre P D. Gradient refractive index optics and ray tracing of the compound eye of Beijing firefly[J]. Chinese Science Bulletin, 1994, 39(18): 1705-1708. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199418018.htm
    [26] 张红鑫, 卢振武, 王瑞庭, 等. 曲面复眼成像系统的研究[J]. 光学精密工程, 2006, 14(3): 346-350. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM200603001.htm

    ZHANG Hongxin, LU Zhenwu, WANG Ruiting, et al. Study on curved compound eye imaging system[J]. Optics and Precision Engineering, 2006, 14(3): 346-350. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM200603001.htm
    [27] 曹阿秀, 史立芳, 石瑞英, 等. 大视场复眼结构图像处理算法研究[J]. 光子学报, 2014, 43(5): 199-204. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201405034.htm

    CAO Axiu, SHI Lifang, SHI Ruiying, et al. Image processing algorithm study of large FOV compound eye structure[J]. Acta Photonica Sinica, 2014, 43(5): 0510005-1-0510005-6. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201405034.htm
    [28] 曹阿秀. 小型化复眼结构多维信息探测关键技术研究[D]. 成都: 中国科学院大学, 2019.

    CAO Axiu. Research on multi-dimensional information detection technology by miniaturized compound eye structure[D]. Chengdu: University of Chinese Academy of Sciences, 2019.
    [29] 马孟超. 用于目标三维探测的复眼系统设计研究[D]. 合肥: 中国科学技术大学, 2014.

    MA Mengchao. Research on Artificial Compound Eye System for 3D Object Detection[D]. Hefei: University of Science and Technology of China, 2014.
    [30] 裘溯, 倪宇, 金伟其, 等. 基于微端面光纤面的多孔径视场重叠复眼的视场模型[J]. 光学精密工程, 2015, 23(11): 3018-3025. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201511003.htm

    QIU Su, NI Yu, JIN Weiqi, et al. FOV modeling of multi-aperture superposition compound eye based on micro-surface fiber faceplate[J]. Optics and Precision Engineering, 2015, 23(11): 3018-3025. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201511003.htm
    [31] 付跃刚, 赵宇, 刘智颖, 等. 用于目标识别的紧凑型仿生复眼光学系统设计[J]. 红外与激光工程, 2017, 46(6): 8-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201706001.htm

    FU Yuegang, ZHAO Yu, LIU Zhiying, et al. Design of compact bionic compound eye optical system used for target identification[J]. Infrared and Laser Engineering, 2017, 46(6): 8-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201706001.htm
    [32] 庞阔, 宋乐, 房丰洲. 应用光学自由曲面的曲面结构大视场仿生复眼系统[J]. 光电子·激光, 2018, 29(1): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201801002.htm

    PANG Kuo, SONG Le, FANG Fengzhou. Large field of view curved compound eye imaging system using optical freeform surface[J]. Journal of Optoelectronics·Laser, 2018, 29(1): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201801002.htm
    [33] 胡雪蕾, 高明, 陈阳. 大视场曲面仿生复眼光学系统设计[J]. 红外与激光工程, 2020, 49(1): 0114002-1 -0114002-9.

    HU Xuelei, GAO Ming, CHEN Yang. Design of curved bionic compound eye optical system with large field of view[J]. Infrared and Laser Engineering, 2020, 49(1): 0114002-1 -0114002-9.
    [34] 吴楠. 果蝇复眼感光细胞的光电信号转换模型[D]. 广州: 南方医科大学, 2015.

    WU Nan. A model for optical signal transduction in Drosophila photoreceptors[D]. Guangzhou: Southern Medical University, 2015.
    [35] NIE J. Morphogenesis of Drosophila Photoreceptor Cells[D]. Indiana University, 2014.
    [36] 金菲, 颜忠诚. 昆虫的复眼[J]. 生物学通报, 2012, 47(12): 4-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SWXT201212005.htm

    JIN Fei, YAN Zhongcheng. Compound eyes of insects[J]. Bulletin of Biology, 2012, 47(12): 4-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SWXT201212005.htm
    [37] 陈俊宇. 模拟昆虫视觉机理的小目标检测研究[D]. 南京: 河海大学, 2021.

    CHEN Junyu. Research on small target motion detection simulating the mechanism of insect vision[D]. Nanjing: Hohai University, 2021.
    [38] Wardill T J, List O, Li X F, et al. Multiple spectral inputs improve motion discrimination in the Drosophila visual system[J]. Science, 2012, 336 (6083): 925-931.
    [39] Hassenstein B, Reichardt W. System theoretsche analyse der Zeit, reihenfolgen und vor zeichenauswertung bei der bewegungsperzeption der russelkafers chlorophanus[J]. Zeitschrift Fur Naturforschung B, 1956, 11(9): 513-524.
    [40] Egelhaaf M, Borst A. Transient and steady-state response properties of movement detectors[J]. Journal of Optical Society of America A, 1989, 6(1): 116-127.
    [41] Borst A, Egelhaaf M. Principles of visual motion detection[J]. Trends in Neurosciences, 1989, 12(8): 297-306.
    [42] Missler J M, Kamangar F A. A neural network for pursuit tracking inspired by the fly visual system[J]. Neural Networks, 1995, 8(3): 463- 480.
    [43] Rind F C, Bramwell D I. Neural network based on the input organization of an identified neuron signaling impending collision[J]. Journal of Neurophysiology, 1996, 75(3): 967-985.
    [44] Yue S G, Rind F C. Postsynaptic organisations of directional selective visual neural networks for collision detection[J]. Neurocomputing, 2013, 103: 50-62.
    [45] 徐立中, 石爱业, 黄凤辰, 等. 多源监测信息融合仿生复眼型系统模式及感知计算机理[J]. 智能系统学报, 2008, 3(4): 328-335. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNXT200804012.htm

    XU Lizhong, SHI Aiye, HUANG Fengchen, et al. A perceptual and computational mechanism for bionic compound eye systems with multi-source information fusion[J]. CAAI Transactions on Intelligent Systems, 2008, 3(4): 328-335. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNXT200804012.htm
    [46] 黄凤辰, 李敏, 石爱业, 等. 受昆虫视觉启发的多光谱遥感影像小目标检测[J]. 通信学报, 2011, 32(9): 88-95. https://www.cnki.com.cn/Article/CJFDTOTAL-TXXB201109014.htm

    HUANG Fengchen, LI Min, SHI Aiye, et al. Insert visual system inspired small target detection for multi-spectral remotely sensed images[J]. Journal of Communications, 2011, 32(9): 88-95. https://www.cnki.com.cn/Article/CJFDTOTAL-TXXB201109014.htm
    [47] 王磊. 基于果蝇视觉神经的目标检测与跟踪[D]. 贵阳: 贵州大学, 2015.

    WANG Lei. Fly's Vision Neuron Objective Motion Detection and Tracking[D]. Guiyang: Guizhou University, 2015.
    [48] 胡常俊. 基于果蝇视觉机理的车辆预警算法及其应用[D]. 贵阳: 贵州大学, 2019.

    HU Changjun. Vehicle Warning Algorithm Based on Fly'S Visual Mechanism and Its Application[D]. Guiyang: Guizhou University, 2019.
    [49] 罗荣成. 基于DSP的人工果蝇视觉碰撞预警系统研究与实现[D]. 贵阳: 贵州大学, 2017.

    LUO Rongcheng. Research and Implementation of Artificial Drosophila Visual Collision Warning System Based on DSP[D]. Guiyang: Guizhou University, 2017.
    [50] Mehmet N O, Felix S, Shadi J, et al. Neuronal diversity and convergence in a visual system developmental atlas[J]. Nature, 2020, 589(7840): 88-95.
    [51] LI P H, Lindsey L F, Januszewski M, et al. Automated reconstruction of a serial-Section EM Drosophila brain with flood-filling networks and local realignment[J]. Microscopy Social Science Electronic Publishing, 2019, 25(2): 1364-1365.
    [52] 郭爱克. 探索自然智慧本质, 照亮类脑智能之路——果蝇学习记忆与抉择的神经环路机制研究[J]. 中国科学: 生命科学, 2019, 49(10): 1354-1374. https://www.cnki.com.cn/Article/CJFDTOTAL-JCXK201910009.htm

    GUO Aike. A cross-species review of cognitive neural circuits to illuminate the way to brain-inspired intelligence[J]. Scientia Sinica Vitae, 2019, 49(10): 1354-1374. https://www.cnki.com.cn/Article/CJFDTOTAL-JCXK201910009.htm
    [53] 张柯. 果蝇中基于目标突显程度的视觉抉择机制研究[D]. 上海: 中国科学院大学, 2008.

    ZHANG Ke. Saliency-Based Visual Decision-making in Drosophila[D]. Shanghai: Chinese Academy of Science, 2008.
    [54] Schneider J, Murali N, Taylor G W, et al. Can Drosophila melanogaster tell who's who?[J]. PLOS ONE, 2018, 13(10): 1-10.
    [55] ZHAO F F, ZENG Y, GUO A K, et al. A neural algorithm for Drosophila linear and nonlinear decision-making[J/OL]. Scientific Reports, 2020. https://doi.org/10.1038/s41598-020-75628-y.
    [56] 张娜. 面向仿生微纳导航系统的偏振器研究[D]. 大连: 大连理工大学, 2006.

    ZHANG Na. Research on the Polarizer for the Bionic Micro-nano Navigation System[D]. Dalian: Dalian University of Technology, 2006.
    [57] 金菲, 颜忠诚. 昆虫复眼的仿生学应用[J]. 生物学通报, 2014, 49(6): 3-5. https://www.cnki.com.cn/Article/CJFDTOTAL-SWXT201406002.htm

    JIN Fei, YAN Zhongcheng. Biomimetic applications of insect compound eyes[J]. Bulletin of Biology, 2014, 49(6): 3-5. https://www.cnki.com.cn/Article/CJFDTOTAL-SWXT201406002.htm
    [58] 王国锋. 蝇视觉系统在红外成像制导中的应用研究[D]. 西安: 西北工业大学, 2003.

    WANG Guofeng. Research on IR Imaging Guidance Using Fly'S Visual System[D]. Xi'an: Northwestern Polytechnical University, 2003.
    [59] 高文静, 杨预立, 邢强, 等. 基于目标运动的复眼式双目视觉测距法[J]. 应用光学, 2020, 41(3): 571-579. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202003021.htm

    GAO Wenjing, YANG Yuli, XING Qiang, et al. Compound eye binocular vision ranging method based on target motion[J]. Journal of Applied Optics, 2020, 41(3): 571-579. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202003021.htm
    [60] Tabata K, Takahashi H, Yamada K. Evaluation of multiwavelength band-pass filter endoscope using compound eye optical system[C]// Fourth International Conference on Innovative Computing, Information and Control, 2009.
    [61] 邢强. 仿昆虫复眼结构的运动目标位置检测[D]. 南京: 南京航空航天大学, 2010.

    XING Qiang. Fast Detcetion of Position of High Speed Moving Object by Inspiration of Compound Eye of Insect[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010.
  • 加载中
图(17)
计量
  • 文章访问数:  190
  • HTML全文浏览量:  163
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-05
  • 修回日期:  2022-05-11
  • 刊出日期:  2023-03-20

目录

    /

    返回文章
    返回