留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

红外低辐射膜的设计、制备与表征

韩建龙 邱桂花 张瑞蓉 王雯 王益珂 谭东东 于名讯

韩建龙, 邱桂花, 张瑞蓉, 王雯, 王益珂, 谭东东, 于名讯. 红外低辐射膜的设计、制备与表征[J]. 红外技术, 2022, 44(3): 249-254.
引用本文: 韩建龙, 邱桂花, 张瑞蓉, 王雯, 王益珂, 谭东东, 于名讯. 红外低辐射膜的设计、制备与表征[J]. 红外技术, 2022, 44(3): 249-254.
HAN Jianlong, QIU Guihua, ZHANG Ruirong, WANG Wen, WANG Yike, TAN Dongdong, YU Mingxun. Design, Preparation and Characterization of Infrared Low-Emissivity Film[J]. Infrared Technology , 2022, 44(3): 249-254.
Citation: HAN Jianlong, QIU Guihua, ZHANG Ruirong, WANG Wen, WANG Yike, TAN Dongdong, YU Mingxun. Design, Preparation and Characterization of Infrared Low-Emissivity Film[J]. Infrared Technology , 2022, 44(3): 249-254.

红外低辐射膜的设计、制备与表征

详细信息
    作者简介:

    韩建龙(1986-)男,高级工程师,主要从事可见光、红外、太赫兹等隐身材料与技术的研究。E-mail: jianlongmail@126.com

  • 中图分类号: TN213

Design, Preparation and Characterization of Infrared Low-Emissivity Film

  • 摘要: 为了降低红外探测技术对军事目标生存能力的威胁,研制了红外低辐射膜。设计并制备了基于一维光子晶体结构的红外低辐射膜,通过结构参数优化,改善了其红外波段反射性能,并降低了薄膜总厚度。采用红外椭偏仪测试了原材料Ge膜和ZnS膜的厚度和折射率,将测试结果带入设计结构,制备了8~12 μm发射率分别为0.045、0.097、0.174和0.346的红外低辐射膜。研究结果表明,通过结构优化,可制备出不同发射率的红外低辐射膜,满足武器装备不同辐射背景下的红外隐身要求。
  • 图  1  一维光子晶体材料的结构模型

    Figure  1.  Structural model of one-dimensional photonic crystals

    图  2  光子禁带与反射光谱对比图

    Figure  2.  Comparison of photon band gap and reflection spectrum

    图  3  红外低辐射膜剖面示意图

    Figure  3.  Section diagram of infrared low-emissivity film

    图  4  红外低辐射膜的理论反射光谱

    Figure  4.  Theoretical reflection spectrum of infrared low-emissivity film

    图  5  不同厚度的红外低辐射膜的理论反射光谱

    Figure  5.  Theoretical reflection spectrum of infrared low-emissivity film with different thickness

    图  6  锗膜(a)和硫化锌膜(b)的拟合结果与测试结果对比图

    Figure  6.  Comparison between fitting results and test results of Ge film (a) and ZnS film (b)

    图  7  Ge膜(a)和ZnS膜(b)的折射率

    Figure  7.  Refractive index of Ge film (a) and ZnS film (b)

    图  8  修正后红外低辐射膜理论反射光谱

    Figure  8.  Theoretical reflection spectrum of revised infrared low-emissivity film

    图  9  红外低辐射膜样品照片

    Figure  9.  Photos of infrared low-emissivity film samples

    图  10  制备的红外低辐射膜的反射光谱

    Figure  10.  Reflection spectrum of the prepared infrared low-emissivity film

    表  1  不同厚度的红外低辐射膜的理论红外性能

    Table  1.   Theoretical infrared performance of infrared low-emissivity film with different thickness

    Number of layers Total thickness /μm 8-14 μm theoretical average reflectivity Relative value of thickness reduction Relative value of theoretical average reflectivity reduction
    16 15.9 98.7% 25.4% 0.9%
    13 11.35 98.1% 46.7% 1.5%
    7 6.98 90.9% 67.2% 8.7%
    3 2.41 82.4% 88.7% 17.3%
    1 0.63 67.4% 97.0% 32.3%
    下载: 导出CSV

    表  2  制备的Ge膜和ZnS膜停镀点和tooling值

    Table  2.   Stop coating point and tooling value of prepared Ge film and ZnS film

    Material Equipment input thickness/kA Stop coating thickness/kA Test thickness/kA Thickness difference/% Tooling value
    Ge 5.000 5.013 5.164 3.01 1.030
    ZnS 9.000 9.027 7.854 12.99 0.870
    下载: 导出CSV

    表  3  8~14 μm理论与实测平均反射率对比表

    Table  3.   Comparison of 8-14 μm theoretical and measured average reflectivity

    Number of layers Total thickness/μm Theoretical average reflectivity Measured average reflectivity Average reflectivity difference
    24 21.4 99.6% 98.2% -1.4%
    7 6.98 90.9% 89.3% -1.6%
    3 2.41 82.4% 80.1% -2.3%
    1 0.63 67.4% 68.7% -1.3%
    下载: 导出CSV

    表  4  在8~12 μm波段理论设计结果、反射光谱测试结果和发射率测试结果对比表

    Table  4.   Comparison between theoretical design results, reflection spectrum test results and emissivity test results in 8-12 μm

    Number of layers Total thickness/μm Design average reflectivity Test average reflectivity Theoretical emissivity Measured emissivity Difference between theoretical and measured emissivity
    24 21.4 99.7% 98.2% 0.018 0.045 0.027
    7 6.98 90.5% 91.2% 0.088 0.097 0.009
    3 2.41 84.7% 83.9% 0.161 0.174 0.013
    1 0.63 68.1% 68.7% 0.313 0.346 0.033
    下载: 导出CSV
  • [1] 钱昂, 何友金, 刘亮. 反舰导弹中波与长波红外成像制导优势对比研究[J]. 红外技术, 2014, 36(8): 671-675. http://hwjs.nvir.cn/article/id/3c59e358-47c5-4df4-b024-9e1ecf6ebd51

    QIAN Ang, HE Youjin, LIU Liang. A comparative study of the advantage of infrared imaging guidance anti-ship missiles based on medium wave and long-wave[J]. Infrared Technology, 2014, 36(8): 671-675. http://hwjs.nvir.cn/article/id/3c59e358-47c5-4df4-b024-9e1ecf6ebd51
    [2] 赵峰民, 刘皞, 陈望达. 微波/红外成像复合制导技术发展分析[J]. 激光与红外, 2012, 42(1): 8-10. doi:  10.3969/j.issn.1001-5078.2012.01.002

    ZHAO Fengmin, LIU Hao, CHEN Wangda. Analysis of the development of radar/IR compound guidance technique[J]. Laser & Infrared, 2012, 42(1): 8-10. doi:  10.3969/j.issn.1001-5078.2012.01.002
    [3] 吴涛, 白云塔. 激光/红外复合制导技术研究综述[J]. 红外, 2008, 29(9): 6-8. doi:  10.3969/j.issn.1672-8785.2008.09.002

    WU Tao, BAI Yunta. Overview of research on laser/infrared compound guidance techniques[J]. Infrared(Monthly), 2008, 29(9): 6-8. doi:  10.3969/j.issn.1672-8785.2008.09.002
    [4] 李永波, 朱洪利, 张宝芹, 等. 隐身涂料研究现状及发展趋势[J]. 材料导报, 2015, 29(26): 358-360. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2015S2086.htm

    LI Yongbo, ZHU Hongli, ZHANG Baoqin, et al. Research status and development trend of stealth coating[J]. Materials Reports, 2015, 29(26): 358-360. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2015S2086.htm
    [5] 王子君. 基于冷屏和隐身薄膜的热源目标红外隐身研究[D]. 合肥: 中国科技大学, 2018: 2-11.

    WANG Zijun. Infrared Stealth of Heat Source Target based on Cold Plate and Stealth Film[D]. Hefei: University of Science and Technology of China, 2018: 2-11.
    [6] QI Dong, WANG Xian, CHENG Yongzhi, et al. Design and charac- terization of one-dimensional photonic crystals based on Zns/Ge for infrared-visible compatible stealth applications[J]. Optical Materials, 2016, 62: 52-56. doi:  10.1016/j.optmat.2016.09.024
    [7] 杜宏艳, 戚宇帆, 吴晨雪, 等. SiO2光子晶体结构色薄膜的制备与光学性能研究[J]. 材料工程, 2019, 47(12): 111-117. doi:  10.11868/j.issn.1001-4381.2018.001044

    DU Hongyan, QI Yufan, WU Chenxue, et al. Preparation and optical properties of SiO2 photonic crystal structured color films[J]. Journal of Materials Engineering, 2019, 47(12): 111-117. doi:  10.11868/j.issn.1001-4381.2018.001044
    [8] 王志迅. 一维光子晶体在红外隐身材料应用方面的设计与实现[D]. 武汉: 华中科技大学, 2015: 38-47.

    WANG Zhixun. Design and Implementation of One-Dimensional Photonic Crystal in Infrared Stealth Materials[D]. Wuhan: Huazhong University of Science and Technology, 2015: 38-47.
    [9] 卢仪, 卜小海, 李栋先, 等. 基于光子晶体的红外隐身材料研究进展[J]. 激光与光电子学进展, 2019, 56(8): 080003-1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201908003.htm

    LU Yi, BU Xiaomei, LI Dongxian, et al. Research progress of infrared stealth materials based on photonic crystals[J]. Laser & Optoelectronics Progress, 2019, 56(8): 080003-1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201908003.htm
    [10] 李康文, 李享成, 陈平安, 等. 基于异质结构的一维光子晶体红外3~5μm高反射镜设计[J]. 光学学报, 2018, 38(9): 092201-1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201809040.htm

    LI Kangwen, LI Xiangcheng, CHEN Pingan, et. al. Design of one-dimensional photonic crystal high mirror based on heterostructure at 3~5μm[J]. Acta Optica Sinica, 2018, 38(9): 092201-1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201809040.htm
    [11] 林伟丽, 邱桂花, 于名讯, 等. 一维光子晶体兼容隐身材料研究进展[J]. 兵器材料科学与工程, 2017, 40(6): 114-118. https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201706032.htm

    LIN Weili, QIU Guihua, YU Mingxun, et al. Research progress of one-dimensional photonic crystal compatible stealth materials[J]. Ordnance Material Science and Engineering, 2017, 40(6): 114-118. https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201706032.htm
    [12] 付伟. 红外隐身原理及应用技术[J]. 红外与激光工程, 2002, 31(1): 88-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200201020.htm

    FU Wei. Principle and application technology of IR stealth[J]. Infrared and Laser Engineering, 2002, 31(1): 88-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200201020.htm
    [13] 谢民勇, 沈卫东, 宋斯洪, 等. 基于目标与背景红外辐射对比度的红外隐身效能研究[J]. 红外技术, 2011, 33(2): 113-115. doi:  10.3969/j.issn.1001-8891.2011.02.011

    XIE Minyong, SHEN Weidong, SONG Sihong, et al. Effectiveness evaluation of infrared stealth based on the constant of target and background infrared radiation[J]. Infrared Technology, 2011, 33(2): 113-115. doi:  10.3969/j.issn.1001-8891.2011.02.011
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  147
  • HTML全文浏览量:  47
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-07
  • 修回日期:  2021-06-16
  • 刊出日期:  2022-03-20

目录

    /

    返回文章
    返回