留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多尺度语义网络的红外舰船目标检测

陈初侠 丁勇

陈初侠, 丁勇. 基于多尺度语义网络的红外舰船目标检测[J]. 红外技术, 2022, 44(5): 529-536.
引用本文: 陈初侠, 丁勇. 基于多尺度语义网络的红外舰船目标检测[J]. 红外技术, 2022, 44(5): 529-536.
CHEN Chuxia, DING Yong. Infrared Ship Detection Based on Multi-scale Semantic Network[J]. Infrared Technology , 2022, 44(5): 529-536.
Citation: CHEN Chuxia, DING Yong. Infrared Ship Detection Based on Multi-scale Semantic Network[J]. Infrared Technology , 2022, 44(5): 529-536.

基于多尺度语义网络的红外舰船目标检测

详细信息
    作者简介:

    陈初侠(1984-),男,实验师,主要研究方向为数字图像处理。E-mail:feng84chen@163.com

    通讯作者:

    丁勇(1974-),男,教授,博士生导师,主要研究方向为图像深度分析与质量评价。E-mail:dingyong09@zju.edu.cn

  • 中图分类号: TN219

Infrared Ship Detection Based on Multi-scale Semantic Network

  • 摘要: 为了增强舰船检测的抗干扰性能,本文提出了一种有效且稳定的单阶段舰船检测网络,该网络主要由3个模块组成:特征优化模块,特征金字塔融合模块和上下文增强模块,其中特征优化模块是提取多尺度上下文信息,并进一步细化和增强顶层特征输入特性,增强弱小目标检测性能;特征金字塔融合模块能够生成表征能力更强的语义信息;上下文增强模块则是整合局部和全局特征增强网络特征表达能力,以降低复杂背景对检测性影响,平衡前景和背景的不均衡差异,消除鱼鳞波的影响。为了验证本文所提方法的有效性和鲁棒性,本文对自建的舰船数据集进行了定性定量验证。实验结果表明,相比现有最新基准对比模型,本文所提网络在自建数据集上均达到了最优性能,在不增加复杂度的情况下极大提升了检测精度。
  • 图  1  复杂红外场景下的船舶示例

    Figure  1.  Examples of infrared ship in complex infrared scenes

    图  2  多尺度上下文特征

    Figure  2.  Framework for multi-scale context feature

    图  3  数据集示例

    Figure  3.  Example for self-built dataset

    图  4  不同算法定性结果对比

    Figure  4.  Comparison of qualitative results for different algorithms

    图  5  不同场景下的工程验证结果

    Figure  5.  Analysis of engineering results for different scenarios

    表  1  不同模块的消融结果

    Table  1.   Ablation results of different modules

    MCI SI Fusion P mAP R F1
    71.1 76.3 82.7 86.5
    74.5 76.9 83.2 86.6
    78.2 78.2 83.5 87.2
    80.5 79.2 85.0 88.8
    下载: 导出CSV

    表  2  自建数据集上的检测结果对比

    Table  2.   Comparison of results on non-public data sets

    Models P mAP R F1
    YOLOv3 75.5 74.2 81.3 83.9
    RetinaNet 77.3 80.6 78.9 77.4
    RefineNet 78.4 83.1 79.3 81.1
    CenterNet 77.1 78.6 84.5 88.7
    FCOS 78.7 85.1 76.6 86.5
    Ours 80.5 79.2 85.0 88.8
    下载: 导出CSV

    表  3  不同数据子集上的检测结果对比

    Table  3.   Comparison results for different sub-set

    Models SOS CBC Others
    P mAP R F1 P mAP R F1 P mAP R F1
    YOLOv3 67.3 67.4 70.6 68.9 72.1 80.6 83.0 88.3 76.4 85.1 81.5 76.0
    RetinaNet 66.6 70.3 72.5 69.4 75.4 81.1 83.1 83.3 78.5 84.5 85.8 76.6
    RefineNet 64.8 78.8 78.3 70.9 73.7 82.3 85.0 89.1 77.2 89.6 86.4 75.7
    CenterNet 67.8 74.6 79.6 73.2 73.6 77.1 81.9 93.0 79.3 78.9 80.1 85.5
    FCOS 64.8 80.8 78.3 70.9 72.5 76.3 82.4 86.2 78.7 77.7 78.5 85.9
    Ours 68.0 83.3 83.6 74.9 73.9 85.2 84.9 90.1 83.5 85.4 87.6 86.0
    下载: 导出CSV
  • [1] 邢莎, 吉林, 雍杨, 等. 复杂场景下的自动红外舰船目标检测[J]. 红外技术, 2014, 36(4): 320-325. http://hwjs.nvir.cn/article/id/hwjs201404013

    XING Sha, JI Lin, YONG Yang, et al. Automatic infrared warship target detection under complicated background[J]. Infrared Technology, 2014, 36(4): 320-325. http://hwjs.nvir.cn/article/id/hwjs201404013
    [2] 赵文涛, 曹昕鸷, 田志勇. 基于自适应阈值区域生长的红外舰船目标分割方法[J]. 红外技术, 2018, 40(2): 158-163. http://hwjs.nvir.cn/article/id/hwjs201802010

    ZHAO Wentao, CAO Xinzhi, TIAN Zhiyong. An infrared ship target segmentation method based on adaptive threshold region growth[J]. Infrared Technology, 2018, 40(2): 158-163. http://hwjs.nvir.cn/article/id/hwjs201802010
    [3] 丁荣莉, 韩传钊, 谢宝蓉, 等. 红外遥感图像舰船目标检测[J]. 红外技术, 2019, 41(2): 127-133. http://hwjs.nvir.cn/article/id/hwjs201902004

    DING Rongli, HAN Chuanzhao, XIE Baorong, et al. Ship target detection in infrared remote-sensing image[J]. Infrared Technology, 2019, 41(2): 127-133. http://hwjs.nvir.cn/article/id/hwjs201902004
    [4] Kumar D, ZHANG X. Ship detection based on faster R-CNN in SAR imagery by anchor box optimization[C]//2019 International Conference on Control, Automation and Information Sciences (ICCAIS), 2019: 309-313.
    [5] Redmon J, Farhadi A. YOLOv3: an incremental improvement[J]. arXiv: 1804.02767, 2018.
    [6] LIU W, Anguelov D, Erhan D, et al. SSD: single shot multibox detector[C]//European Conference on Computer Vision, 2016: 21-37.
    [7] LIN T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[C]//International Conference on Computer Vision, 2017: 2999-3007.
    [8] LAW H, DENG J. CornerNet: detecting objects as paired keypoints[C]// European Conference on Computer Vision, 2018: 765-781.
    [9] DUAN K, BAI S, XIE L, et al. CenterNet: keypoint triplets for object detection[J/OL]. arXiv: 1904.08189, 2019.
    [10] TAN M, PANG R, LE Q V, et al. EfficientDet: scalable and efficient object detection[J/OL]. arXiv: 1911.09070, 2019.
    [11] 杨涛, 戴军, 吴钟建, 等. 基于深度学习的红外舰船目标识别[J]. 红外技术, 2020, 42(5): 426-433. http://hwjs.nvir.cn/article/id/hwjs202005003

    YANG Tao, DAI Jun, WU Zhongjian, et al. Target recognition of infrared ship based on deep learning[J]. Infrared Technology, 2020, 42(5): 426-433. http://hwjs.nvir.cn/article/id/hwjs202005003
    [12] 黄洁, 姜志国, 张浩鹏, 等. 基于卷积神经网络的遥感图像舰船目标检测[J]. 北京航空航天大学学报, 2017(9): 132-139. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201709016.htm

    HUANG Jie, JIANG Zhiguo, ZHANG Haopeng, et al. Ship target detection in remote sensing image based on convolutional neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017(9): 132-139. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201709016.htm
    [13] 顾佼佼, 李炳臻, 刘克, 等. 基于改进Faster R-CNN的红外舰船目标检测算法[J]. 红外技术, 2021, 43(2): 170-178. http://hwjs.nvir.cn/article/id/6dc47229-7cdb-4d62-ae05-6b6909db45b9

    GU Jiaojiao, LI Bingzhen, LIU Ke, et al. Infrared ship target detection algorithm based on improved faster R-CNN[J]. Infrared Technology, 2021, 43(2): 170-178. http://hwjs.nvir.cn/article/id/6dc47229-7cdb-4d62-ae05-6b6909db45b9
    [14] GUO Haoyuan, YANG Xi, WANG Nannan, et al. A CenterNet++ model for ship detection in SAR images[J]. Pattern Recognition, 2021, 112(88): 25-34.
    [15] FAN S, ZHU F, CHEN S, et al. FII-CenterNet: an anchor-free detector with foreground attention for traffic object detection[J]. IEEE Transactions on Vehicular Technology, 2021, 120(99): 1-14.
    [16] Barrios J M, Bustos B. Competitive content-based video copy detection using global descriptors[J]. Multimedia Tools and Applications, 2013, 62(1): 75-110.
    [17] ZHANG Xiang, YANG Wei, TANG Xiaolin, et al. A fast learning method for accurate and robust lane detection using two-stage feature extraction with YOLOv3[J]. Sensors, 2018, 18(12): 4308-4315.
    [18] LIN G, Milan A, SHEN C, et al. RefineNet: multi-path refinement networks for high-resolution semantic segmentation[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 1289-1301.
    [19] TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2020: 1099e3233.
    [20] LIU Z, ZHANG X, JIANG T, et al. Infrared salient object detection based on global guided lightweight non-local deep features[J]. Infrared Physics & Technology, 2021, 12(3): 2309-2315.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  185
  • HTML全文浏览量:  35
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-05
  • 修回日期:  2021-11-29
  • 刊出日期:  2022-05-20

目录

    /

    返回文章
    返回