留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种高精度医学红外热像图的实现方法

高玉宝 江涛 胡孝成 江琼 杨长春 刘泽良 漆世锴

高玉宝, 江涛, 胡孝成, 江琼, 杨长春, 刘泽良, 漆世锴. 一种高精度医学红外热像图的实现方法[J]. 红外技术, 2020, 42(11): 1111-1118.
引用本文: 高玉宝, 江涛, 胡孝成, 江琼, 杨长春, 刘泽良, 漆世锴. 一种高精度医学红外热像图的实现方法[J]. 红外技术, 2020, 42(11): 1111-1118.
GAO Yubao, JIANG Tao, HU Xiaocheng, JIANG Qiong, YANG Changchun, LIU Zeliang, QI Shikai. Method of High Precision Medical Infrared Thermography[J]. Infrared Technology , 2020, 42(11): 1111-1118.
Citation: GAO Yubao, JIANG Tao, HU Xiaocheng, JIANG Qiong, YANG Changchun, LIU Zeliang, QI Shikai. Method of High Precision Medical Infrared Thermography[J]. Infrared Technology , 2020, 42(11): 1111-1118.

一种高精度医学红外热像图的实现方法

基金项目: 

国家自然科学基金项目 51667009

江西省教育厅科技项目 GJJ161083

江西省青年自然科学基金项目 20192BAB217001

江西省卫生计生委科技项目 20164028

详细信息
    作者简介:

    高玉宝(1978-),男,江西九江人,副教授,博士,研究方向:图像处理技术在中西医学上的应用、医学仪器的研制。E-mail:ybgao_jju@163.com

  • 中图分类号: TP391

Method of High Precision Medical Infrared Thermography

  • 摘要: 医学红外热像设备测得的红外数据及转换得到的温度数据难以直接判定其所属的人体区域,常需将其转为图像数据,利用图像处理技术得到感兴趣区域并从区域内温度数据得到生物特征,实现疾病的筛查或诊断。然而,从14位红外数据转换到8位图像数据存在严重的数据精度损失,导致处理性能欠佳。本文提出一种新的热像图表达方法,所得到的彩色热像图含原精度的温度数据信息,且含温度观察窗设定尺度下的彩色增强效果,同时载有温度数据记录和观察窗设定规则,通过对图像数据的逆变换,可以再现原始温度数据,并可改变彩色增强效果。该方法提供的热像图无需额外存取温度数据文件,在不同的红外热像系统间具有通用性,将更符合大数据和人工智能的发展趋势。
  • 图  1  红外热像机输出的原灰度图和伪彩色图

    Figure  1.  Original gray scale and pseudo color image output by infrared thermal imager

    图  2  新方法得到的红外热图像及其色带

    Figure  2.  Infrared thermal image and its color band obtained by new method

    图  3  对新的红外热像图通过温度观察窗进行增强

    Figure  3.  Enhance the new infrared thermal image through the temperature observation window

    图  4  新的红外热像图的灰度图像

    Figure  4.  Gray image of new infrared thermal image

    图  5  原灰度图像和新灰度图像的边缘检测对比

    Figure  5.  Comparison of edge detection between original gray image and new gray image

    图  6  新图像去除背景信息的效果图

    Figure  6.  Effect picture of removing background information from new image

    图  7  不同RGB排列方式得到的新的红外热像图的效果图

    Figure  7.  Effect picture of new infrared thermal image obtained by different RGB arrangement

    图  8  新的红外热图在不同色阶和不同温度观察尺度下的效果图

    Figure  8.  The effect of new infrared thermogram in different color scales and different temperature scales

  • [1] Bhowmik M K, Gogoi U R, Majumdar G, et al. Designing of Ground-Truth-Annotated DBT-TU-JU Breast Thermogram Database Toward Early Abnormality Prediction[J]. IEEE Journal of Biomedical and Health Informatics, 2018, 22: 1238-1249. doi:  10.1109/JBHI.2017.2740500
    [2] De Santana M A, Pereira J M S, Da Silva F L, et al. Breast cancer diagnosis based on mammary thermography and extreme learning machines[J]. Research on Biomedical Engineering, 2018, 34: 45-53. doi:  10.1590/2446-4740.05217
    [3] Dua G, Mulaveesala R. Applicability of active infrared thermography for screening of human breast: a numerical study[J]. Journal of Biomedical Optics, 2018, 23: 9. https://www.ncbi.nlm.nih.gov/pubmed/29560626
    [4] Mambou S J, Maresova P, Krejcar O, et al. Breast Cancer Detection Using Infrared Thermal Imaging and a Deep Learning Model[J]. Sensors, 2018, 18: 19.
    [5] Morales-Cervantes A, Kolosovas-Machuca E S, Guevara E, et al. an Automated Method for the Evaluation of Breast Cancer Using Infrared Thermography[J]. Excli Journal, 2018, 17: 989-998. https://www.ncbi.nlm.nih.gov/pubmed/30564079
    [6] Santana M A d, Pereira J M S, Silva F L d, et al. Breast cancer diagnosis based on mammary thermography and extreme learning machines[J]. Research on Biomedical Engineering, 2018, 34: 45-53. doi:  10.1590/2446-4740.05217
    [7] Wahab A A, Salim M I M, Yunus J, et al. Comparative evaluation of medical thermal image enhancement techniques for breast cancer detection[J]. Journal of Engineering and Technological Sciences, 2018, 50: 40-52. doi:  10.5614/j.eng.technol.sci.2018.50.1.3
    [8] Abdel-Nasser M, Moreno A, Puig D. Breast Cancer Detection in Thermal Infrared Images Using Representation Learning and Texture Analysis Methods[J]. Electronics, 2019, 8: 18. http://www.researchgate.net/publication/330412196_Breast_Cancer_Detection_in_Thermal_Infrared_Images_Using_Representation_Learning_and_Texture_Analysis_Methods
    [9] Singh D, Singh A K. Role of image thermography in early breast cancer detection- Past, present and future[J]. Computer Methods and Programs in Biomedicine, 2020, 183: 61-69. https://www.sciencedirect.com/science/article/pii/S0169260719311277
    [10] Fokam D, Lehmann C. Clinical assessment of arthritic knee pain by infrared thermography[J]. Journal of basic and clinical physiology and pharmacology, 2018, 30: 21-25. http://www.ncbi.nlm.nih.gov/pubmed/30375348
    [11] Pauk J, Wasilewska A, Ihnatouski M. Infrared thermography sensor for disease activity detection in Rheumatoid arthritis patients[J]. Sensors (Switzerland), 2019, 19: 34-48. https://www.mdpi.com/1424-8220/19/16/3444/pdf
    [12] Pauk J, Ihnatouski M, Wasilewska A. Detection of inflammation from finger temperature profile in rheumatoid arthritis[J]. Medical & Biological Engineering & Computing, 2019, 57: 2629-2639. doi:  10.1007/s11517-019-02055-1.pdf
    [13] Gatt A, Mercieca C, Borg A, et al. A comparison of thermographic characteristics of the hands and wrists of rheumatoid arthritis patients and healthy controls[J]. Scientific Reports, 2019, 9: 172-180. doi:  10.1038/s41598-018-36890-3
    [14] Haq T, Crane J D, Kanji S, et al. Optimizing the methodology for measuring supraclavicular skin temperature using infrared thermography; implications for measuring brown adipose tissue activity in humans[J]. Scientific Reports, 2017, 7: 9. doi:  10.1038/s41598-017-00053-7
    [15] Jimenez-Pavon D, Corral-Perez J, Sanchez-Infantes D, et al. Infrared Thermography for Estimating Supraclavicular Skin Temperature and BAT Activity in Humans: A Systematic Review[J]. Obesity, 2019, 27: 1932-1949. doi:  10.1002/oby.22635
    [16] LIN P H, Echeverria A, Poi M J. Infrared thermography in the diagnosis and management of vasculitis[J]. Journal of vascular surgery cases and innovative techniques, 2017, 3: 112-114. doi:  10.1016/j.jvscit.2016.12.002
    [17] Gauci J, Falzon O, Formosa C, et al. Automated Region Extraction from Thermal Images for Peripheral Vascular Disease Monitoring[J]. Journal of Healthcare Engineering, 2018, 2018: 14. https://www.hindawi.com/journals/jhe/2018/5092064/
    [18] Carriere M E, de Haas L E M, Pijpe A, et al. Validity of thermography for measuring burn wound healing potential[J]. Wound Repair and Regeneration, 2019, 10: 1-8. https://pubmed.ncbi.nlm.nih.gov/31777128/
    [19] Knobel-Dail R B, Holditch-Davis D, Sloane R, et al. Body temperature in premature infants during the first week of life: Exploration using infrared thermal imaging[J]. Journal of Thermal Biology, 2017, 69: 118-123. doi:  10.1016/j.jtherbio.2017.06.005
    [20] Topalidou A, Ali N, Sekulic S, et al. Thermal imaging applications in neonatal care: a scoping review[J]. Bmc Pregnancy and Childbirth, 2019, 19: 14. doi:  10.1186/s12884-018-2132-3
    [21] Pereira T, Nogueira-Silva C, Simoes R. Normal range and lateral symmetry in the skin temperature profile of pregnant women[J]. Infrared Physics & Technology, 2016, 78: 84-91. https://www.sciencedirect.com/science/article/pii/S1350449516302067
    [22] Martini G, Cappella M, Culpo R, et al. Infrared thermography in children: a reliable tool for differential diagnosis of peripheral microvascular dysfunction and Raynaud's phenomenon?[J]. Pediatric Rheumatology, 2019, 17: 9. doi:  10.1186/s12969-019-0307-8
    [23] Garcia-Porta N, Gantes-Nunez F J, Tabernero J, et al. Characterization of the ocular surface temperature dynamics in glaucoma subjects using long-wave infrared thermal imaging[J]. Journal of the Optical Society of America a-Optics Image Science and Vision, 2019, 36: 1015-1021. doi:  10.1364/JOSAA.36.001015
    [24] Debiec-Bak A, Wojtowicz D, Pawik L, et al. Analysis of body surface temperatures in people with Down syndrome after general rehabilitation exercise[J]. Journal of Thermal Analysis and Calorimetry, 2019, 135: 2399-2410. doi:  10.1007/s10973-018-7345-1
    [25] Hernandez-Contreras D A, Peregrina-Barreto H, Rangel-Magdaleno J D, et al. Plantar Thermogram Database for the Study of Diabetic Foot Complications[J]. IEEE Access, 2019, 7: 161296-161307. doi:  10.1109/ACCESS.2019.2951356
    [26] 丁德红. 16位高精度在线式红外热像仪的技术方案与实现[J].红外技术, 2017, 39(9): 841-847. http://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201709011.htm

    Dehong D. Online Temperature Measurement Technology Solutions and Implementationof 16 bit Infrared Thermal Imager[J]. Infrared Technology, 2017, 39(9): 841-847. http://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201709011.htm
    [27] Tan J H, Acharya U R. Pseudocolours for thermography-Multi-segments colour scale[J]. Infrared Physics & Technology, 2015, 72: 140-147. https://www.sciencedirect.com/science/article/pii/S1350449515001875
    [28] Kermani S, Samadzadehaghdam N, EtehadTavakol M. Automatic color segmentation of breast infrared images using a Gaussian mixture model[J]. Optik, 2015, 126: 3288-3294. doi:  10.1016/j.ijleo.2015.08.007
    [29] LI T J, WANG Y Y, CHANG C, et al. Color-appearance-model based fusion of gray and pseudo-color images for medical applications[J]. Information Fusion, 2014, 19: 103-114. doi:  10.1016/j.inffus.2012.07.002
  • 加载中
图(8)
计量
  • 文章访问数:  781
  • HTML全文浏览量:  423
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-07
  • 修回日期:  2020-11-09
  • 刊出日期:  2020-11-20

目录

    /

    返回文章
    返回