留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间相机全铝合金光机结构的设计与分析

王上 张星祥 朱俊青

王上, 张星祥, 朱俊青. 空间相机全铝合金光机结构的设计与分析[J]. 红外技术, 2022, 44(4): 364-370.
引用本文: 王上, 张星祥, 朱俊青. 空间相机全铝合金光机结构的设计与分析[J]. 红外技术, 2022, 44(4): 364-370.
WANG Shang, ZHANG Xingxiang, ZHU Junqing. Design and Analysis of All Aluminum Alloy Optical Mechanical Structure of Space Cameras[J]. Infrared Technology , 2022, 44(4): 364-370.
Citation: WANG Shang, ZHANG Xingxiang, ZHU Junqing. Design and Analysis of All Aluminum Alloy Optical Mechanical Structure of Space Cameras[J]. Infrared Technology , 2022, 44(4): 364-370.

空间相机全铝合金光机结构的设计与分析

基金项目: 

装备演示验证项目 E03671SZU0

详细信息
    作者简介:

    王上(1996-),男,硕士研究生,主要从事光机结构设计。E-mail:ws790402497@163.com

    通讯作者:

    张星祥(1977-),男,博士,研究员,主要从事空间宽幅成像技术、精密装调与拼接技术、在轨测试与处理技术方面的研究。E-mail:jan_zxx@163.com

  • 中图分类号: V445.8

Design and Analysis of All Aluminum Alloy Optical Mechanical Structure of Space Cameras

  • 摘要: 提高光机结构的温度适应性对空间相机降低热控难度、提升系统稳定性具有重要意义。根据统一材料结构可以消除系统热差的原理,选用铝合金材料对某可见光波段空间相机的光机结构进行了设计,并完成了实际工况下的工程分析,达到了在20℃±15℃均匀温度变化与不同方向重力耦合状态下,像质均满足MTF(modulation transfer function)在71.4 lp/mm处大于0.3的成像指标。采取常用的不同材料搭配方案进行对比分析,相同工况的全铝结构稳定性远优于不同材料方案,验证了统一材料的光机结构在温度适应性方面的优势。
  • 图  1  同轴双反光学系统

    Figure  1.  Coaxial double mirror optical system

    图  2  等效高斯光学系统

    Figure  2.  Equivalent Gaussian optical system

    图  3  光学设计方案

    Figure  3.  Optical design scheme

    图  4  MTF曲线

    Figure  4.  Curves of the MTF

    图  5  一体化铝合金主镜结构

    Figure  5.  Integrated aluminum alloy primary mirror structure

    图  6  整体光机结构图

    Figure  6.  Overall optical and mechanical structure

    图  7  梯度温度分布

    Figure  7.  Gradient temperature distribution

    图  8  对比方案的结构形式

    Figure  8.  Structure of the comparison plans

    图  9  碳化硅主镜

    Figure  9.  SiC primary mirror

    图  10  支撑结构为高体份的MTF曲线

    Figure  10.  MTF curves of SiCp/AL-HT8 support structure

    图  11  支撑结构为钛合金的MTF曲线

    Figure  11.  MTF curves of TC4 support structure

    表  1  全铝结构方案材料属性

    Table  1.   Material properties of all aluminum structure plan

    Material Density/(g·cm−3) Young's modulus/GPa Thermal conductivity/(W·m−1·℃−1) Coefficient of thermal expansion/(10−6·℃−1) Poisson's ratio
    Al6061 2.7 71 154.3 22.4 0.25
    HK9L 2.51 82 1.1 7.1 0.21
    下载: 导出CSV

    表  2  不同工况下的对比分析

    Table  2.   Comparative analysis under different working conditions

    Working condition Temperature Load +15℃ +15℃ - - +15℃ +15℃
    Gravity Load - - Axial Radial Axial Radial
    Constraints Free Fixed Fixed Fixed Fixed Fixed
    Results Δx/mm 4.75e−5 −4.08e−5 −5.62e−7 5.25e−5 −4.32e−5 6.61e−6
    Δy/mm 4.74e−5 4.98e−5 6.25e−6 −5.59e−4 7.92e−5 −4.86e−4
    Δz/mm −3.09e-2 −3.09e-2 −2.15e−4 5.88e−7 −3.10e-2 −3.08e−2
    M1 surface RMS/nm 3.178 23.955 4.103 8.024 25.028 27.576
    M2 surface RMS/nm 1.983 1.964 0.592 0.053 2.108 1.984
    MTF min 0.463 0.327 0.451 0.436 0.326 0.303
    下载: 导出CSV

    表  3  梯度温度场中系统参数变化

    Table  3.   Variation of system parameters in gradient temperature field

    ΔT/℃ 5 6 7 8 9
    Main mirror surface change RMS/nm 18.490 22.144 25.835 29.526 33.215
    Secondary mirror surface change RMS/nm 1.246 1.508 1.757 2.010 2.259
    MTF min 0.378 0.345 0.308 0.269 0.228
    下载: 导出CSV

    表  4  对比方案的两种材料搭配方式

    Table  4.   Two material matching methods of the comparison scheme

    Plans Reflector Lens Supporting structure Connector Weight/kg
    Plan 1 SiC HK9L SiCp/AL-HT8 Invar 1.85
    Plan 2 SiC HK9L ZTC4 Invar 2.36
    下载: 导出CSV

    表  5  对比方案中材料属性

    Table  5.   Material properties in comparison scheme

    Material Density/(g·cm−3) Young's modulus/GPa Thermal conductivity/ (W·m−1·℃−1) Coefficient of thermal expansion/(10−6·℃−1) Poisson's ratio
    Invar 8.1 141 13.9 0.05-7.5 0.25
    SiC 3.05 33. 185 2.5 0.2
    SiCp/AL-HT8 2.94 180 190 8 0.23
    ZTC4 4.44 114 8.8 8.9 0.29
    下载: 导出CSV
  • [1] 张星祥, 任建岳. TMA空间相机性能稳定性的全状态分析与测试[J]. 红外与激光工程, 2014, 43(9): 2996-3004. doi:  10.3969/j.issn.1007-2276.2014.09.037

    ZHANG X X, REN J Y. Analysis and testing on imaging-performance stability of TMA space camera at various states[J]. Infrared and Laser Engineering, 2014, 43(9): 2996-3004. doi:  10.3969/j.issn.1007-2276.2014.09.037
    [2] 周子楠, 马军, 尉佩, 等. 激光/红外共光路无热化光学系统设计[J]. 激光与光电子学进展, 2015, 52(1): 185-191. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201501026.htm

    ZHOU Z N, MA J, WEI P, et al. Laser/infrared optical system design of common optical path and athermalization[J]. Laser & Optoelectronics Progress, 2015, 52(1): 185-191. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201501026.htm
    [3] 吴清文, 卢泽生, 卢锷, 等. 空间光学遥感器热分析[J]. 光学精密工程, 2002(2): 205-208. doi:  10.3321/j.issn:1004-924X.2002.02.017

    WU Q W, LU Z S, LU E, et al. Thermal analysis for a space optical remote sensor[J]. Optics and Precision Engineering, 2002(2): 205-208. doi:  10.3321/j.issn:1004-924X.2002.02.017
    [4] 许求真. 经典卡塞格林系统热差分析[J]. 激光与红外, 2011, 41(4): 435-441. doi:  10.3969/j.issn.1001-5078.2011.04.016

    XU Q Z. Analysis on thermal difference of classical Cassegrain system[J]. Laser & Infrared, 2011, 41(4): 435-441. doi:  10.3969/j.issn.1001-5078.2011.04.016
    [5] 徐思华, 彭小强, 铁贵鹏, 等. 同质材料反射系统热特性研究[J]. 应用光学, 2020, 41(1): 60-66. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202001012.htm

    XU S H, PENG X Q, TIE G P, et al. Study on thermal characteristic of homogeneous material reflective system[J]. Journal of Applied Optics, 2020, 41(1): 60-66 https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202001012.htm
    [6] Toulemont Y, Breysse J, Pierot D, et al. The 3.5 mm all SiC telescope for SPICA[C]//Proceedings of SPIE, 2004, 5487: 1001-1012.
    [7] 任栖锋, 沈忙作. 全金属反射光学系统主镜的集成分析[J]. 光电工程, 2005(12): 55-58. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC200512014.htm

    REN Q F, SHEN M Z. Integrated optical analysis of a reflecting optical system with all metal components[J]. Opto-electronic Engineering, 2005(12): 55-58. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC200512014.htm
    [8] Raymond G, Werner P, Alex S, et al. Design and fabrication of diamond machined, aspheric mirrors for ground based near IR astronomy[C]//Proceedings of SPIE, 2003, 4841: 677-688.
    [9] CAO Y H, LI L, GAO G J, et al. Design of aspherical metal mirrors used in infrared thermal imaging systems[C]//Proceedings of SPIE, 2005, 5638: 344-351.
    [10] Risse S, Scheiding S, Gebhardt A, et al. Development and fabrication of a hyperspectral, mirror based IR-telescope with ultra precise manufacturing and mounting techniques for a snap together system assembly[C]//Proceedings of SPIE, 2011, 8176: 8176N.
    [11] Newswander T, Crowther B, Gubbels G, et al. Aluminum alloy AA-6061 and RSA-6061 heat treatment for large mirror applications[C]// Proceedings of SPIE, 2013, 8837: 4.
    [12] Deppo V D, Pace E, Morgante G, et al. A prototype for the primary mirror of the ESA ARIEL mission: design and development of an off-axis 1-m diameter aluminium mirror for infrared space applications[C]//Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation Ⅲ, 2018: DOI: 10.1117/12.2313392.
    [13] 郭疆, 何欣. 大口径空间遥感相机主反射镜支撑设计[J]. 光学精密工程, 2008(9): 1642-1647. doi:  10.3321/j.issn:1004-924X.2008.09.013

    GUO J, HE X. Design of support for primary mirror of space remote sensing camera[J]. Optics and Precision Engineering, 2008(9): 1642-1647. doi:  10.3321/j.issn:1004-924X.2008.09.013
    [14] 刘光. 基于光机热集成的空间相机主动热光学关键技术研究[D]. 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2019.

    LIU G. Research of the Key Technologies on Active-thermal Optics for the Space Camera Based on Structural-thermal-optical Integration[D]. Changchun: University of Chinese Academy of Sciences (CIOMP), 2019.
    [15] 董得义, 李志来, 薛栋林, 等. 重力对空间相机系统波像差影响的光机集成分析与验证[J]. 光学精密工程, 2016, 24(8): 1917-1926. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201608013.htm

    DONG D Y, LI Z L, XUE D L, et al. Integrated optomechanical analysis and experiments for influence of gravity on wavefront aberration of space camera[J]. Optics and Precision Engineering, 2016, 24(8): 1917-1926. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201608013.htm
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  42
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-07
  • 修回日期:  2021-02-20
  • 刊出日期:  2022-04-20

目录

    /

    返回文章
    返回