留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于GNR先验的电力设备热成像超分辨率方法

刘云峰 赵洪山 杨晋彪 韩晋锋 刘秉聪

刘云峰, 赵洪山, 杨晋彪, 韩晋锋, 刘秉聪. 基于GNR先验的电力设备热成像超分辨率方法[J]. 红外技术, 2023, 45(1): 40-48.
引用本文: 刘云峰, 赵洪山, 杨晋彪, 韩晋锋, 刘秉聪. 基于GNR先验的电力设备热成像超分辨率方法[J]. 红外技术, 2023, 45(1): 40-48.
LIU Yunfeng, ZHAO Hongshan, YANG Jinbiao, HAN Jinfeng, LIU Bingcong. Super Resolution Method for Power Equipment Infrared Imaging Based on Gradient Norm-ratio Prior[J]. Infrared Technology , 2023, 45(1): 40-48.
Citation: LIU Yunfeng, ZHAO Hongshan, YANG Jinbiao, HAN Jinfeng, LIU Bingcong. Super Resolution Method for Power Equipment Infrared Imaging Based on Gradient Norm-ratio Prior[J]. Infrared Technology , 2023, 45(1): 40-48.

基于GNR先验的电力设备热成像超分辨率方法

基金项目: 

国网山西电力公司科技项目配电设备智能传感与态势感知运维技术研究 921010025

详细信息
    作者简介:

    刘云峰(1978-),男,高级工程师,主要研究方向为电力系统自动化。E-mail:50044024@qq.com

  • 中图分类号: TM41

Super Resolution Method for Power Equipment Infrared Imaging Based on Gradient Norm-ratio Prior

  • 摘要: 电力设备红外图像在电力设备状态监测、故障识别等方面发挥着重要作用。针对红外图像应用时存在的分辨率低,清晰度不足的问题,本文提出一种基于图像梯度范数比(Gradient Norm-ratio, GNR)先验约束的压缩感知电力设备红外图像超分辨率方法。通过分析电力设备红外图像在不同采样比时重建图像高频信息的变化规律,将GNR先验引入传统压缩感知超分辨率模型中。并针对改进后的模型设计了有效的求解算法,通过半二次分裂方法引入辅助变量,对不同变量交替迭代求解,实现红外图像超分辨率重建。仿真实验结果验证了GNR先验信息的引入,有利于超分辨率算法取得更好的重建效果。与现有经典超分辨率方法相比,本文方法重建图像无论在主观视觉效果还是客观评价指标上都有了较好的提升。
  • 图  1  采用不同约束项时重建图像高频信息成本变化图

    Figure  1.  Reconstruction of high frequency information cost chart of image with different constraints

    图  2  求解算法流程图

    Figure  2.  Flow chart of solving algorithm

    图  3  人工下采样红外图像不同方法重建结果

    Figure  3.  Reconstruction results of artificial down sampling infrared image by different methods

    图  4  1号图像不同方法重建结果

    Figure  4.  Reconstruction results of No.1 image by different methods

    图  5  2号图像不同方法重建结果

    Figure  5.  Reconstruction results of No.2 image by different methods

    图  6  不同大小图像重建所需时间

    Figure  6.  The time required to reconstruct images of different sizes

    表  1  不同方法重建图像PSNR评价指标对比

    Table  1.   Comparison of PSNR evaluation indexes of reconstructed images by different methods

    Image number Zhang's Original CS Yang's Li's Ours
    1 23.0657 24.9632 26.5846 27.2059 29.3659
    2 22.5691 24.6251 25.9631 26.3620 29.0325
    3 23.6245 24.3219 26.4263 26.3494 30.0316
    4 22.9521 23.6594 25.6845 25.2631 28.9613
    5 22.1694 24.2351 26.4975 26.1279 30.1034
    6 23.1784 23.9865 27.3249 26.6947 28.9674
    7 22.5728 24.6937 26.3592 27.0691 29.3461
    8 21.6891 23.4967 26.6481 27.9612 28.6541
    9 22.7816 25.1435 26.2597 26.6729 30.5319
    10 23.0684 24.3167 26.9437 27.1636 28.6755
    下载: 导出CSV

    表  2  不同方法重建图像SSIM评价指标对比

    Table  2.   Comparison of SSIM evaluation indexes of reconstructed images by different methods

    Image number Zhang’s Original CS Yang’s Li’s Ours
    1 0.7934 0.8635 0.8966 0.9103 0.9731
    2 0.7349 0.8526 0.8791 0.8955 0.9436
    3 0.8172 0.8678 0.9249 0.9027 0.9348
    4 0.7393 0.8211 0.8842 0.8931 0.9274
    5 0.7304 0.8197 0.8991 0.8769 0.9533
    6 0.7681 0.7987 0.9014 0.8643 0.9264
    7 0.7311 0.8235 0.8624 0.8971 0.9083
    8 0.7129 0.8433 0.8742 0.8892 0.9151
    9 0.7486 0.8730 0.8785 0.8797 0.9762
    10 0.7519 0.8261 0.8834 0.9031 0.9216
    下载: 导出CSV

    表  3  不同方法重建图像AG评价指标对比

    Table  3.   Comparison of AG evaluation indexes of reconstructed images by different methods

    Image
    number
    Zhang’s Original CS Yang’s Li’s Ours
    1 20.6496 20.3521 29.1152 28.4946 31.0694
    2 18.6232 24.7993 32.6134 30.6779 33.9552
    3 20.5298 23.6657 31.5780 32.6144 34.3967
    4 22.3863 22.6349 30.3440 29.4893 31.3995
    5 19.8414 23.3463 27.4514 24.9311 31.3776
    6 17.6890 21.1064 28.9477 31.3425 33.1015
    7 18.6451 25.6108 32.6944 32.4871 36.2160
    8 22.3637 24.4892 30.9645 28.5638 34.2556
    9 20.0684 25.6946 31.9865 30.9783 36.9943
    10 19.6452 20.3521 29.1152 28.4946 31.0694
    下载: 导出CSV

    表  4  不同方法重建图像IE评价指标对比

    Table  4.   Comparison of IE evaluation indexes of reconstructed images by different methods

    Image
    number
    Zhang’s Original CS Yang’s Li’s Ours
    1 5.8113 6.0168 6.3153 6.2154 6.5312
    2 5.7256 5.8364 6.0215 5.9342 6.1249
    3 6.2316 6.1546 6.2599 6.5644 6.7291
    4 5.9233 5.9487 6.1547 6.3263 6.3478
    5 6.0532 6.1306 6.1658 6.2431 6.4528
    6 5.625 5.8314 5.8947 6.1456 6.1569
    7 5.8449 6.1125 6.0387 6.2831 6.5937
    8 5.7052 5.8841 6.2436 6.1463 6.2649
    9 6.1242 5.8543 6.1488 6.1395 6.1531
    10 5.9439 6.0337 6.3894 6.2343 6.5013
    下载: 导出CSV
  • [1] 王毅, 陈启鑫, 张宁, 等. 5G通信与泛在电力物联网的融合: 应用分析与研究展望[J]. 电网技术, 2019, 43(5): 1575-1585. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201905012.htm

    WANG Yi, CHEN Qixin, ZHANG Ning, et al. Fusion of the 5G communication and the ubiquitous electric internet of things: application analysis and research prospects[J]. Power System Technology, 2019, 43(5): 1575-1585. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201905012.htm
    [2] 李鹏, 毕建刚, 于浩, 等. 变电设备智能传感与状态感知技术及应用[J]. 高电压技术, 2020, 46(9): 3097-3113. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ202009013.htm

    LI Peng, BI Jiangang, YU Hao, et al. Technology and application of intelligent sensing and state sensing for transformation equipment[J]. High Voltage Engineering, 2020, 46(9): 3097-3113. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ202009013.htm
    [3] 梁兴, 严居斌, 尹磊. 基于红外图像的输电线路故障识别[J]. 电测与仪表, 2019, 56(24): 99-103. https://www.cnki.com.cn/Article/CJFDTOTAL-DCYQ201924016.htm

    LIANG Xing, YAN Jubin, YIN Lei. Fault identification of transmission lines based on infrared image[J]. Electrical Measurement & Instrumentation, 2019, 56(24): 99-103. https://www.cnki.com.cn/Article/CJFDTOTAL-DCYQ201924016.htm
    [4] 赵仕策, 赵洪山, 寿佩瑶. 智能电力设备关键技术及运维探讨[J]. 电力系统自动化, 2020, 44(20): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXT202020001.htm

    ZHAO Shice, ZHAO Hongshan, SHOU Peiyao. Discussion on key technology and operation & maintenance of intelligent power equipment[J]. Automation of Electric Power Systems, 2020, 44(20): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXT202020001.htm
    [5] Lozanov Y, Tzvetkova S. A methodology for processing of thermographic images for diagnostics of electrical equipment[C]//2019 11th Electrical Engineering Faculty Conference (BulEF). IEEE, 2019: 1-4.
    [6] LI Y, ZHAO K, REN F, et al. Research on super-resolution image reconstruction based on low-resolution infrared sensor[J]. IEEE Access, 2020, 8: 69186-69199. doi:  10.1109/ACCESS.2020.2984945
    [7] 唐艳秋, 潘泓, 朱亚平, 等. 图像超分辨率重建研究综述[J]. 电子学报, 2020, 48(7): 1407-1420. doi:  10.3969/j.issn.0372-2112.2020.07.022

    TANG Yanqiu, PAN Hong, ZHU Yaping, et al. A survey of image super-resolution reconstruction[J]. Acta Electronica Sinica, 2020, 48(7): 1407-1420. doi:  10.3969/j.issn.0372-2112.2020.07.022
    [8] Bätz M, Eichenseer A, Kaup A. Multi-image super-resolution using a dual weighting scheme based on Voronoi tessellation[C]//2016 IEEE International Conference on Image Processing (ICIP). IEEE, 2016: 2822-2826.
    [9] WANG L, LIN Z, DENG X, et al. Multi-frame image super-resolution with fast upscaling technique[J/OL]. arXiv preprint arXiv: 1706.06266, 2017.
    [10] Rasti P, Demirel H, Anbarjafari G. Improved iterative back projection for video super-resolution[C]//2014 22nd Signal Processing and Com-munications Applications Conference (SIU). IEEE, 2014: 552-555.
    [11] 杨欣, 费树岷, 周大可. 基于MAP的自适应图像配准及超分辨率重建[J]. 仪器仪表学报, 2011, 32(8): 1771-1775. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201108014.htm

    YANG Xin, FEI Shumin, ZHOU Dake. Self-adapting weighted technology for simultaneous image registration and super-resolution reconstruction based on MAP[J]. Chinese Journal of Scientific Instrument, 2011, 32(8): 1771-1775. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201108014.htm
    [12] Kato T, Hino H, Murata N. Multi-frame image super resolution based on sparse coding[J]. Neural Networks, 2015, 66: 64-78.
    [13] Greaves A, Winter H. Multi-frame video super-resolution using convolutional neural networks[J]. IEEE Transactions on Multimedia, 2017, 8(3): 76-85.
    [14] Hayat K. Multimedia super-resolution via deep learning: a survey[J]. Digital Signal Processing, 2018, 81: 198-217.
    [15] DONG W, ZHANG L, Lukac R, et al. Sparse representation-based image interpolation with nonlocal autoregressive modeling[J]. IEEE Transactions on Image Processing, 2013, 22(4): 1382-1394.
    [16] WANG L, WU H, PAN C. Fast image upsampling via the displacement field[J]. IEEE Transactions on Image Processing, 2014, 23(12): 5123-5135.
    [17] ZHANG Y, FAN Q, BAO F, et al. Single-image super-resolution based on rational fractal interpolation[J]. IEEE Transactions on Image Processing, 2018, 27(8): 3782-3797.
    [18] Manjón J V, Coupé P, Buades A, et al. Non-local MRI upsampling[J]. Medical Image Analysis, 2010, 14(6): 784-792.
    [19] ZHANG X, Burger M, Bresson X, et al. Bregmanized nonlocal regularization for deconvolution and sparse reconstruction[J]. SIAM Journal on Imaging Sciences, 2010, 3(3): 253-276.
    [20] LI L, XIE Y, HU W, et al. Single image super-resolution using combined total variation regularization by split Bregman Iteration[J]. Neurocomputing, 2014, 142: 551-560.
    [21] Rasti P, Demirel H, Anbarjafari G. Improved iterative back projection for video super-resolution[C]//2014 22nd Signal Processing and Communications Applications Conference (SIU). IEEE, 2014: 552-555.
    [22] YANG J, Wright J, HUANG T S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873.
    [23] WANG X, YU K, DONG C, et al. Recovering realistic texture in image super-resolution by deep spatial feature transform[C]//Proceedings of The IEEE Conference on Computer Vision and Pattern Recognition, 2018: 606-615.
    [24] Zoph B, Le Q V. Neural architecture search with reinforcement learning[J/OL]. arXiv preprint arXiv: 1611.01578, 2016.
    [25] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
    [26] Candes E, Romberg J. Sparsity and incoherence in compressive sampling[J]. Inverse Problems, 2007, 23(3): 969.
    [27] Sulam J, Ophir B, Zibulevsky M, et al. Trainlets: Dictionary learning in high dimensions[J/OL]. arXiv preprint arXiv: 1602.00212, 2016.
    [28] ZHANG H, Hager W W. A nonmonotone line search technique and its application to unconstrained optimization[J]. SIAM Journal on Opti-mization, 2004, 14(4): 1043-1056.
    [29] JIN J, YUAN J, SHEN Q, et al. Curvelet transform based adaptive image deblocking method[J]. Computers & Electrical Engineering, 2014, 40(8): 117-129.
    [30] Chengbo L. An efficient algorithm for total variation regularization with applications to the single pixel camera and compressive sensing[D]. Houston: Department of Computational and Applied Mathematics, 2009.
    [31] 中华人民共和国国家质量监督检验检疫总局. 工业检测型红外热像仪[S]. GB/T 19870-200, [2021-06-08].

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Industrial Inspecting Thermal Imagers[S]. GB/T 19870-200, [2021-06-08].
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  39
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-08
  • 修回日期:  2021-08-03
  • 刊出日期:  2023-01-20

目录

    /

    返回文章
    返回