留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铟砷锑红外探测器的研究进展

陈冬琼 杨文运 邓功荣 龚晓霞 范明国 肖婷婷 尚发兰 余瑞云

陈冬琼, 杨文运, 邓功荣, 龚晓霞, 范明国, 肖婷婷, 尚发兰, 余瑞云. 铟砷锑红外探测器的研究进展[J]. 红外技术, 2022, 44(10): 1009-1017.
引用本文: 陈冬琼, 杨文运, 邓功荣, 龚晓霞, 范明国, 肖婷婷, 尚发兰, 余瑞云. 铟砷锑红外探测器的研究进展[J]. 红外技术, 2022, 44(10): 1009-1017.
CHEN Dongqiong, YANG Wenyun, DENG Gongrong, GONG Xiaoxia, FAN Mingguo, XIAO Tingting, SHANG Falan, YU Ruiyun. Research Progress of InAsSb Infrared Detectors[J]. Infrared Technology , 2022, 44(10): 1009-1017.
Citation: CHEN Dongqiong, YANG Wenyun, DENG Gongrong, GONG Xiaoxia, FAN Mingguo, XIAO Tingting, SHANG Falan, YU Ruiyun. Research Progress of InAsSb Infrared Detectors[J]. Infrared Technology , 2022, 44(10): 1009-1017.

铟砷锑红外探测器的研究进展

基金项目: 

云南省中青年学术和技术带头人后备人才项目 202205AC160054

详细信息
    作者简介:

    陈冬琼(1989-),女,博士研究生,研究方向是光电材料与器件。E-mail: dqchensci@163.com

    通讯作者:

    杨文运(1968-),男,研高工,研究方向是光电材料与器件。E-mail: yangwenyun@olied.com

  • 中图分类号: TN216

Research Progress of InAsSb Infrared Detectors

  • 摘要: InAs1-xSbx属于Ⅲ-Ⅴ族化合物半导体合金材料,随Sb组分含量的不同,室温下可覆盖3~12 μm波长,并且InAsSb材料具有载流子寿命长、吸收系数大、载流子迁移率高等优点,是一种具有广阔应用前景的红外光电材料。探测器可以在150 K甚至近室温下工作,具有较高的灵敏度和探测率,是低功耗、小型化、高灵敏度和快响应中长波红外探测系统的良好选择,InAsSb中长波红外探测器受到广泛的关注和研究。本文首先简要概述了InAsSb材料的基本性质。其次,对国内外InAsSb红外探测器发展状况进行了介绍。最后,对InAsSb红外探测技术的发展进行了总结与展望。
  • 图  1  InAs1-xSbx禁带宽度(Eg)与其成分(x)的关系曲线:(a) 低温;(b) 室温

    注:实线所示是文献[8-16]报道的实验数据,C为能带弯曲系数

    Figure  1.  InAs1-xSbx bandgap versus antimony composition for: (a) Low temperature; (b) Room temperature

    Note: Experimental data from the literature are shown as solid symbols. The bandgap bowing parameters C, are noted

    图  2  InAs1-xSbx带边与其成分x的关系曲线

    Figure  2.  InAs1-xSbxconduction and valence band edges versus antimony composition

    图  3  (a) 光电探测器截面结构示意图(不按实际比例),右边的插图是一个350 μm正方形台面结构的光学显微镜图;(b) 室温零偏压下结构的能带结构示意图[45]

    Figure  3.  (a) Cross-section schematic of the photodiode(not to real scale), The right inset is the microscope of the device; (b) Schematic energy band diagram of the photodiode[45]

    图  4  nBn结构器件:(a) 能带图;(b) 普通(实线)与nBn器件(虚线)暗电流温度特性理论曲线[46]

    Figure  4.  nBn detector: (a) Band edge diagram of the nBn architecture; (b) Schematic Arrhenius plot of temperature dependence of the dark current in standard diode and nBn photodetector[46]

    图  5  长波势垒探测器异质结的能带结构示意图:(a) 导带和价带能级;(b) 偏置电压下能带分布,少子(空穴),箭头表示少子空穴输运方向[55]

    Figure  5.  Schematic band diagrams of the barrier detector heterostructure: (a) conduction and valence band energies; (b) energy band profile under the operating bias, the direction of the minority hole transport being shown with an arrow[55]

    图  6  InAsSb势垒型异质结[56]:(a) 器件结构;(b) 能带示意图

    Figure  6.  InAsSb barrier heterojunction[56] (a) Device structure; (b) Conduction and valence band energies

    图  7  XCBn结构器件:(a) 器件结构;(b) 仿真得到能带图[68];(c) 150-205 K焦平面器件热成像图[68]

    Figure  7.  XCBn photodetector: (a) Device structure; (b) Energy bandgap diagram[68]; (c) Example images taken with the InAsSb MWIR FPA operating from 150 to 205 K[68]

    表  1  国外InAs1-xSbx红外探测器研究结果

    Table  1.   Research results of InAs1-xSbx infrared detectors abroad

    Research institute x Structure Temp./K λcut-off /μm Jdark/(A/cm2) D*/(cmHz1/2/W) NETD/mK Ref
    SCD 0.09 nBnn or CpBnn 150 4.2 < 10-6 - < 25 [34]
    DRS HRL 0.195 nBn 150 4.9 10-5 1.2×1011 44 [35]
    JPL 0.08 QD-BIRD 175 6.5 3.77×10-4 1.07×1011 - [36]
    0.085 nBn 300 4.5 1.6 1×109 - [37]
    VIGO 0.19 p+Bpin+ or p+Bppn+ 230 5.3 0.13 - [38]
    0.7 p+Bppn+ 300 14.2 - - - [39]
    Stony Brook university 0.4 nBn 77 10 5×10-4 4×1010 - [40]
    Nanyang Technological University 0.09 p-i-n 300 5 2.62 8.9×108 - [41]
    下载: 导出CSV
  • [1] Wooley J C, Smith B A. Solid solution in Ⅲ-Ⅴ compounds[C]//Proc. of SPIE, 1958, 72: 214-223.
    [2] Wooley J C, Warner J. Preparation of InAs-InSb Alloys[J]. Canadian Journal of Physics, 1964, 111: 1142-1145.
    [3] Wooley J C, Warner J. Optical energy-cap variation in InAs-InSb alloys[J]. Canadian Journal of Physics, 1964, 42: 1879-1885. doi:  10.1139/p64-176
    [4] Joel M Fastenau, Dmitri Lubyshev, QIU Yueming, et al. Sb-based IR photodetector epi wafers on 100 mm GaSb substrates manufactured by MBE[J]. Infrared Physics & Technology, 2013, 59: 158-162.
    [5] Denghy H Y, Hong X K, Fag W Z, et al. Microstructure characterization of InAs0.93Sb0.07 films grown by ramp-cooled liquid phase epitaxy[J]. Materials Characterization, 2007, 58(3): 307-311. doi:  10.1016/j.matchar.2006.05.009
    [6] Tian Z B, Schuler-Sandy T, Godoy S E, et al. High-operating-temperature MWIR detectors using type Ⅱ superlattices[C]//Proc. of SPIE, 2013, 8867: 88670S.
    [7] Manijeh Razeghi, Siamak Abdollahi Pour, Edward Huang, et al. High operating temperature MWIR photon detectors based on type Ⅱ InAs/GaSb superlattice[C]//Proc. of SPIE, 2011, 8012: 80122Q.
    [8] Smith S N, Phillips C C, Thomas R H, et al. Interband magneto-optics of InAs1-xSbx Semicond[J]. Sci. Technol. , 1992(7): 900-906.
    [9] Balenky G, Donetsky D, Kipshidze G, et al. Properties of unrelaxed InAs1-xSbx alloys grown on compositionally graded buffers[J]. Applied Physics Letters, 2011, 99(14): 141116. doi:  10.1063/1.3650473
    [10] Webster P T, Riordan N A, LIU S, et al. Measurement of InAsSb bandgap energy and InAs/InAsSb band edge positions using spectroscopic ellipsometry and photoluminescence spectroscopy[J]. J. Appl. Phys. , 2015, 118(24): 245706. doi:  10.1063/1.4939293
    [11] Suchalkin S, Ludwig J, Belenky G, et al. Electronic properties of unstrained unrelaxed narrow gap InAsxSb1−x alloys[J]. J. Phys. D. Appl. Phys. , 2016, 49(10): 105101. doi:  10.1088/0022-3727/49/10/105101
    [12] Osbourn G C. InAsSb strained-layer superlattices for long wavelength detector applications[J]. J. Vac. Sci. Technol, 1984, B2(2): 176-178.
    [13] FANG Z M, MA K Y, JAW D H, et al. Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy[J]. Journal of Applied Physics, 1990, 67: 7034. doi:  10.1063/1.345050
    [14] Svensson S P, Sarney W L, Hier H. Band gap of InAs1−xSbx with native lattice constant[J]. Physical Review, 2012, B86: 245205.
    [15] Wieder H H, Clawson A R. Photo-electronic properties of InAs0.07Sb0.93 films[J]. Thin Solid Films, 1973, 15: 217-221. doi:  10.1016/0040-6090(73)90045-X
    [16] Thompson A G, Woolley J C. Energy-gap variation in mixed Ⅲ-Ⅴ alloys[J]. Canadian Journal of Physics, 1967, 45(2): 255-261. doi:  10.1139/p67-026
    [17] Ravindra N M, Srivastava V K. Temperature dependence of the energy gap in semiconductors[J]. J. Phys. Chem. Solids, 1979, 40: 791-793. doi:  10.1016/0022-3697(79)90162-8
    [18] LIN Youxi, WANG Ding, Donetsky Dmitry, et al. Conduction-and valence-band energies in bulk InAs1−x Sbx and type Ⅱ InAs1−xSbx/InAs strained-layer superlattices[J]. Journal of Electronic Materials, 2013, 42(5): 1-9.
    [19] Alexander Soibel, Cory J Hill, Sam A Keo, et al. Room temperature performance of mid-wavelength infrared InAsSb nBn detectors[J]. Applied Physics Letters, 2014, 105(2): 023512. doi:  10.1063/1.4890465
    [20] Craig A P, Thompson M D, Tian Z-B, et al. InAsSb-based nBn photodetectors: lattice mismatched growth on GaAs and low frequency noise performance[J]. Semiconnd. Sci. Technol., 2015, 30: 105011. doi:  10.1088/0268-1242/30/10/105011
    [21] Jen H R, Ma K Y, Stringefellow G B. Long range order in InAsSb[J]. Applied Physics Letters, 1989, 54: 1154-1159. doi:  10.1063/1.100746
    [22] Stradling R A. InSb-based materials for detectors[J]. Semicond Sci Technol., 1991, 6: C52-55. doi:  10.1088/0268-1242/6/12C/011
    [23] Kurtz S R, Dawson L D, Biefekl R M, et al. Ordering-induced band-gap reduction in InAs1−xSbx (x≈0.4) alloys and superlattices[J]. Physical Review B, 1992, 46(3): 1909-1912. doi:  10.1103/PhysRevB.46.1909
    [24] Su-Huai, Alex Zunger. InAsSb/InAs: A type-Ⅰ or a type-Ⅱ band alignment[J]. Physical Review B, 1995, 52: 12039-12044. doi:  10.1103/PhysRevB.52.12039
    [25] Elizabeth H Steenbergen, Oray O Cellek, Dmitri Lubyshev, et al. Study of the valence band offsets between InAs and InAs1−xSbx alloys[C]//SPIE, 2012, 8268: 82680K.
    [26] Webster P T, LIU S, Steenbergen E H, et al. Absorption properties of type-Ⅱ InAs/InAsSb superlattices measured by spectroscopic ellipsometry[J]. Applied Physics Letters, 2015, 106(6): 061907. doi:  10.1063/1.4908255
    [27] Rogalski A, Jozwikowski K. Intrinsic carrier concentration and effective mass in InAs1−xSbx[J]. Infrared Physics, 1989, 29(1): 35-42. doi:  10.1016/0020-0891(89)90006-7
    [28] Safa Kasap, Peter Capper. Handbook of Electronic and Photonic Materials[M]. 2nd: Springer International Publishing: New York, USA, 2017.
    [29] Egan R J, Chin V W L, Tansley T L. Dislocation scattering effects on electron mobility in InAsSb[J]. J. Appl. Phys, 1994, 75(5): 2473-2476. doi:  10.1063/1.356244
    [30] Dixit V K, Bansal B, Venkataraman V, et al. Structural, optical and electrical properties of bulk single crystals of InAs1−xSbx grown by rotatory Bridgman method[J]. Applied Physics Letters, 2002, 81(9): 1630-1632. doi:  10.1063/1.1504163
    [31] YEN M Y. Molecular-beam epitaxial growth and electrical properties of lattice mismatched InAs1−xSbx on (100) GaAs[J]. J. Appl Phys. , 1988, 64(6): 3306-3309. doi:  10.1063/1.342492
    [32] Chyi J H, Kalem S, Kumar N S, et al. Growth of InSb and InAs1−xSbx on GaAs by molecular beam epitaxy[J]. Applied Physics Letters, 1988, 53(12): 1092-1094. doi:  10.1063/1.100031
    [33] Tsukamoto S, Bhattacharya P, Chen Y C, et al. Transport properties of InAsxSb1−x (0≤x≤0.55) on InP grown by molecular-beam epitaxy[J]. J. Appl. Phys., 1990, 67(11): 6819-6822. doi:  10.1063/1.345071
    [34] Yoram Karni, Eran Avnon, Michael Ben Ezra, et al. Large format 15 μm pitch XBn detector[C]//Proc. of SPIE, 9070: 90701F.
    [35] D'Souza A I, Robinson E, Ionescu A C, et al. InAsSb detector & FPA data and analysis[C]//Proc. of SPIE, 2014, 9100: 91000B.
    [36] David Z Ting, Sam A Keo, John K Liu, et al. Barrier infrared detector research at the jet propulsion laboratory[C]//Proc. of SPIE, 2012, 8511: 851104.
    [37] Alexander Soibel, Cory J Hill, Sam A Keo, et al. Room temperature performance of mid-wavelength infrared InAsSb nBn detectors[J]. Infrared Physics & Technology, 2015, 70: 121-124.
    [38] Emilia Gomółka, Małgorzata Kopytko, Olga Markowska, et al. Electrical and optical performance of midwave infrared InAsSb heterostructure detectors[J]. Opt. Eng., 2018, 57(2): 027107.
    [39] Kubiszyn Ł, Michalczewskib K, Benyahiab D, et al. High operating temperature LWIR and VLWIR InAs1−xSbx optically immersed photodetectors grown on GaAs substrates[J]. Infrared Physics & Technology, 2018, 97: 116-122.
    [40] DING Wang, Dmitry Donetsky, Gela Kipshidze, et al. Metamorphic InAsSb-based barrier photodetectors for the long wave infrared region[J]. Applied Physics Letters, 2013, 103: 0511201-05112013.
    [41] TONG Jinchao, Landobasa Y M Tobing, LI Qian, et al. InAs0.9Sb0.1-based hetero-p-i-n structure grown on GaSb with high mid-infrared photodetection performance at room temperature[J]. J. Mater. Sci., 2018, 53: 13010-13017. doi:  10.1007/s10853-018-2573-0
    [42] Bubulac L O, Andrews A M, Gertner E R, et al. Backside-illuminated InAsSb/GaSb broadband detectors[J]. Applied Physics Letters, 1980, 36(9): 734-736. doi:  10.1063/1.91649
    [43] Kim J D, Mohseni H, Wojkowski J S, et al. Growth of InAsSb alloys on GaAs and Si substrate for uncooled infrared photodetector applications [C]//Proc. of SPIE, 1999, 3629: 338-344.
    [44] Chakrabarti P, Krier A, HUANG X L, et al. Fabrication and characterization of an InAs0.96Sb0.04 photodetector for MIR application[J]. IEEE Electron Device Letters, 2004, 25(5): 283-285. doi:  10.1109/LED.2004.826979
    [45] TONG Jinchao, Landobasa Y M Tobing, NI Peinan, et al. High quality InAsSb-based heterostructure n-i-p mid-wavelength infrared photodiode[J]. Applied Surface Science, 2018, 427: 605-608. doi:  10.1016/j.apsusc.2017.08.177
    [46] Maimon S, Wicks G W. nBn detector, an infrared detector with reduced dark current and higher operating temperature[J]. Applied Physics Letters, 2006, 89(15): 151109. doi:  10.1063/1.2360235
    [47] Klipstein P, Klin O, Seve G, et al. MWIR InAsSb XBn detectors for high operating temperatures[C]//Proc. of SPIE on Infrared Technology and Applications XXXVI, 2008, 7660: 76602Y.
    [48] Klipstein P, Klin O, Seve G, et al. XBn barrier detectors for high operating temperatures[C]//Proc. of SPIE on Quantum Sensing and Nanophotonics Devices Ⅶ, 2010, 7608: 7608-65.
    [49] Alexander Soibel, Cory J Hill, Sam A Keo, et al. Room temperature performance of mid-wavelength infrared InAsSb nBn detectors[J]. Infrared Physics & Technology, 2015, 70: 121-124.
    [50] Ionescu A C, Salcido M, T J de Lyon, et al. InAsSb detectors for visible to MWIR high operating temperature applications[C]//Proc. of SPIE, 2011, 8012: 80122S.
    [51] Martyniuk P, Antoni R. Theoretical investigation of properties of InAsSb mid-wave infrared detectors[C]//Proc. of SPIE, 2018, 10830: 108300U.
    [52] Martyniuk P, Antoni R. Modeling of InAsSb/AlAsSb nBn HOT detector's performance limit[C]//Proc. of SPIE, 2013, 8704: 87041X.
    [53] LIN Youxi, Donetsky Dmitry, WANG Ding, et al. Development of bulk InAsSb alloy and barrier heterostryctures for long-wave infrared detectors[J]. Journal of Electronic Materials, 2015, 44(10): 3360-3366. doi:  10.1007/s11664-015-3892-4
    [54] Gregory Belenky, WANG Ding, LIN Youxi, et al. Metamorphic InAsSb/AlInAsSb heterostructures for optoelectronic applications[J]. Applied Physics Letters, 2013, 102: 1111081.
    [55] WANG Ding, Donestsky Dmitry, Kipshidze Gela, et al. Metamorphic InAsSb-based barrier photodetectors for the long wave infrared region[J]. Applied Physics Letters, 2013, 103: 0511201-0511203.
    [56] Kubiszyn Ł, Michalczewski K, Benyahia D, et al. High operation temperature LWIR and VLWIR InAs1-xSbx optically immersed photodetectors grown on GaAs substrate[J]. Infrared Physics & Technology, 2018, 12(25): 1-9.
    [57] Vinita Dahiya, Julia I Deitz, David A. Hollingshead, et al. Investigation of digital alloyed AlInSb metamorphic buffers[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materiala, Processing, Measurement, and Phenomena, 2018, 36: 02D1111-02D1117.
    [58] Klipstein P C, Gross Y, Aronov D, et al. Low SWaP MWIR detector based on XBn focal plane array[C]//Proc. of SPIE, 2013, 8704: 87041S.
    [59] 高玉竹, 龚秀英. 室温InAsSb长波红外探测器的研制[J]. 光电子激光, 2010, 21(12): 1751-1754. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201012003.htm

    GAO Yuzu, GONG Xiuying, WU Guanghui, et al. Fabrication of room temperature InAsSb infrared detector with long-wavelength[J]. Journal of Optoelectronics Laser, 2010, 21(12): 1751-1754. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201012003.htm
    [60] SUN Changhong, HU Shuhong, WANG Qiwei, et al. Single crystalline InAsSb grown on (100) InSb substrate by liquid phase epitaxy[C]//Proc. of SPIE, 2012, 8419: 1-5.
    [61] 黄亮. 基于In、As、Ga、Sb的新型红外探测材料及器件的光谱研究[D]. 上海: 中国科学院上海技术物理研究所, 2014.

    HUANG Liang. Spectroscopic Research of New Infrared Detection Materials and Devices Based on In, As, Ga, Sb[D]. Shanghai: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 2014.
    [62] 宁振动. 锑化物红外探测材料的MOCVD生长及光电性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    NING Zhendong. Research on MOCVD Growth and Opto-electric Characterization of Antimonide Infrared Detection Materials[D]. Harbin: Harbin Institute of Technology, 2016.
    [63] WANG Tingting, XIONG Min, ZHAO Yingchun, et al. Planar mid-infrared InAsSb photodetector grown on GaAs substrate by MOCVD[J]. Applied Physics Express, 2019, 12: 122009. doi:  10.7567/1882-0786/ab507c
    [64] REN Yang, HAO Ruiting, LIU Sijia, et al. High Lattice match growth of InAsSb based materials by molecular beam epitaxy[J]. Chin. Phys. Lett., 2016, 33(12): 1281021-1281023.
    [65] ZHANG Xuan, JIA Qingxuan, SUN Ju, et al. High-performance mid-wavelength infrared detectors based on InAsSb nBn design[J]. Chin. Phys. B, 2020, 29(6): 0685011-0685014.
    [66] 谢浩. InAsSb中波室温红外探测器材料的LPE生长及其器件[D]. 上海: 中国科学院上海技术物理研究所, 2020.

    XIE Hao. LPE Growth and Device Fabrication of InAsSb Medium Wave Infrared Detector at Room Temperature[D]. Shanghai: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 2020.
    [67] DENG Gongrong, YANG Wenyun, ZHAO Peng, et al. High operating temperature InAsSb-based mid-infrared focal plane array with a band-aligned compound barrier[J]. Appl. Phys. Lett, 2020, 113: 031104.
    [68] DENG Gongrong, YANG Wenyun, GONG Xiaoxia, et al. High-performance uncooled InAsSb-based pCBn mid-infrared photo-detectors[J]. Infrared Physics & Technology, 2020, 105: 1032601-1032605. http://www.cnki.com.cn/Article/CJFDTotal-ZGWL202006080.htm
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  344
  • HTML全文浏览量:  85
  • PDF下载量:  185
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-22
  • 修回日期:  2021-06-16
  • 刊出日期:  2022-10-20

目录

    /

    返回文章
    返回