留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于红外图像和逆向投影算法的室内人体跌倒检测方法

陈涵 余磊 彭泗田 聂宏 欧巧凤 熊邦书

陈涵, 余磊, 彭泗田, 聂宏, 欧巧凤, 熊邦书. 基于红外图像和逆向投影算法的室内人体跌倒检测方法[J]. 红外技术, 2021, 43(10): 968-978.
引用本文: 陈涵, 余磊, 彭泗田, 聂宏, 欧巧凤, 熊邦书. 基于红外图像和逆向投影算法的室内人体跌倒检测方法[J]. 红外技术, 2021, 43(10): 968-978.
CHEN Han, YU Lei, PENG Sitian, NIE Hong, OU Qiaofeng, XIONG Bangshu. Indoor Human Fall Detection Method Based on Infrared Images and Back-Projection Algorithm[J]. Infrared Technology , 2021, 43(10): 968-978.
Citation: CHEN Han, YU Lei, PENG Sitian, NIE Hong, OU Qiaofeng, XIONG Bangshu. Indoor Human Fall Detection Method Based on Infrared Images and Back-Projection Algorithm[J]. Infrared Technology , 2021, 43(10): 968-978.

基于红外图像和逆向投影算法的室内人体跌倒检测方法

基金项目: 

国家自然科学基金 62162044

江西省自然科学基金 20202BAB202016

南昌航空大学研究生创新专项基金 YC2019030

详细信息
    作者简介:

    陈涵(1996-),男,硕士研究生,研究方向:基于红外图像的人体姿态识别。E-mail:chenhan_1996@163.com

    通讯作者:

    余磊(1984-),男,副教授,主要从事图像处理及应用。E-mail:yulei@nchu.edu.cn

  • 中图分类号: TP391.4

Indoor Human Fall Detection Method Based on Infrared Images and Back-Projection Algorithm

  • 摘要: 研究表明跌倒是我国老年人伤害的主要原因,缩短跌倒到救治的时间能降低跌倒造成的伤害。为此,室内老年人跌倒检测需求逐年增加。红外传感器具有受光照影响小,保护隐私等优点,越来越广泛地应用于室内人体跌倒检测中。然而,由于红外图像存在分辨率低、信噪比差等缺陷,导致传统方法的检测精度较低。针对这个问题,本文提出一种基于逆向投影算法的室内人体跌倒检测方法。首先,通过人体温度计算出人体与传感器之间的距离;其次,结合图像信息,逆推出人体在真实世界的高度;最后,对获取的人体真实高度数据进行平滑处理,并根据其变化情况进行跌倒检测。实验结果表明,本文所提方法的检测准确率达到98.57%,优于传统非逆向投影方法,其性能完全可以应用于实际检测中。
  • 图  1  屋顶传感器采集实验结果图

    Figure  1.  Experimental results collected by the sensor on the roof

    图  2  墙侧传感器安装示意图

    Figure  2.  Schematic diagram of sensor installation on the wall

    图  3  墙角传感器安装示意图

    Figure  3.  Schematic diagram of sensor installation in the corner

    图  4  跌倒检测算法流程图

    Figure  4.  Flow chart of human fall detection algorithm

    图  5  红外图像及其相关处理

    Figure  5.  Thermal images and processing

    图  6  人体定位示意图

    Figure  6.  Human body positioning diagram

    图  7  两种行为过程示意图

    Figure  7.  Diagrams of two behavioral processes

    图  8  两种行为人体像素高度变化

    Figure  8.  Changes in human pixel height under two behaviors

    图  9  逆向投影整体示意图

    Figure  9.  Overall schematic diagram of back projection

    图  10  测量点位置示意图

    Figure  10.  Schematic diagram of measuring point location

    图  11  图像单位转换示意图

    Figure  11.  Schematic diagram of image unit conversion

    图  12  逆向投影局部示意图

    Figure  12.  Partial schematic diagram of back projection

    图  13  两种行为人体真实高度变化

    Figure  13.  Changes in human real height under two behaviors

    图  14  平滑后两种行为人体真实高度变化

    Figure  14.  Changes in human pixel height after smoothing under two behaviors

    图  15  行走路线示意图

    Figure  15.  Schematic diagram of walking routes

    图  16  跌倒方向示意图

    Figure  16.  Schematic diagram of falling directions

    表  1  行走实验数据

    Table  1.   Walking experiment data

    Route Human body height change by non-back projection algorithm Δw1/pixel Human body height change by back projection algorithm Δw2/mm
    Minimum Maximum Average value Minimum Maximum Average value
    1 6 8 7 43 165 106
    2 9 11 10 48 187 118
    3 12 14 13 52 223 138
    4 8 10 9 45 182 115
    5 5 7 6 41 158 102
    下载: 导出CSV

    表  2  跌倒实验数据

    Table  2.   Fall experiment data

    Route Human body height change by non-back projection algorithm Δf1/pixel Human body height change by back projection algorithm Δf1/mm
    Minimum Maximum Average value Minimum Maximum Average value
    1 17 20 18 991 1475 1233
    2 16 18 17 986 1465 1128
    3 12 15 13 886 1174 1032
    4 15 17 16 975 1253 1114
    5 17 19 18 988 1484 1238
    下载: 导出CSV

    表  3  动作要求

    Table  3.   Action requirements

    Fall action Fall down
    Non-fall action Walk back and forth
    Sit on the chair
    Standing
    Lying in bed
    Squat fast
    下载: 导出CSV

    表  4  检测情况混淆矩阵

    Table  4.   Confusion matrix of detection results

    Real state Predictor state
    Fall Non-fallng
    Fall 79 1
    Walk 0 40
    Sit 0 40
    Stand 0 40
    Lay 0 40
    Squat 3 37
    下载: 导出CSV

    表  5  本文方法与其他方法对比结果

    Table  5.   Results comparison

    Method of this paper Reference [16]
    Sensitivity/(%) 98.75 91.25
    Specificity/(%) 98.50 86.50
    Accuracy/(%) 98.57 87.86
    下载: 导出CSV
  • [1] 邓志锋, 闵卫东, 邹松. 一种基于CNN和人体椭圆轮廓运动特征的摔倒检测方法[J]. 图学学报, 2018, 39(6): 1042-1047. https://www.cnki.com.cn/Article/CJFDTOTAL-GCTX201806005.htm

    DENG Zhifeng, MIN Weidong, ZOU Song. A fall detection method based on CNN and motion features of human elliptical contour[J]. Journal of Graphics, 2018, 39(6): 1042-1047. https://www.cnki.com.cn/Article/CJFDTOTAL-GCTX201806005.htm
    [2] Giovanna S, Ivanoe D, Giuseppe D P. A supervised approach to automatically extract a set of rules to support fall detection in an mHealth system[J]. Applied Soft Computing, 2015, 34: 205-216. doi:  10.1016/j.asoc.2015.04.060
    [3] 胡双杰, 秦建邦, 郭薇. 基于特征自动提取的跌倒检测算法[J]. 传感技术学报, 2018, 31(12): 1842-1847. https://www.cnki.com.cn/Article/CJFDTOTAL-CGJS201812011.htm

    HU Shuangjie, QIN Jianbang, GUO Wei. A fall detection algorithm with automatic feature extraction[J]. Chinese Journal of Sensors and Actuators, 2018, 31(12): 1842-1847. https://www.cnki.com.cn/Article/CJFDTOTAL-CGJS201812011.htm
    [4] 郑毅, 李凤, 张丽, 等. 基于长短时记忆网络的人体姿态检测方法[J]. 计算机应用, 2018, 38(6): 1568-1574. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201806008.htm

    ZHENG Yi, LI Feng, ZHANG Li, et al. Human posture detection method based on long short term memory network[J]. Journal of Computer Applications, 2018, 38(6): 1568-1574. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201806008.htm
    [5] Giuffrida D, Benetti G, Martini D D, et al. Fall detection with supervised machine learning using wearable sensor[C]//Proceedings of 17th International Conference on Industrial Informatics (INDIN) of IEEE, 2019: 253-259.
    [6] Kumar V S, Acharya K G, Sandeep B, et al. Wearable sensor-based human fall detection wireless system[J]. Wireless Communication Networks and Internet of Things, 2019, 493: 217-234 doi:  10.1007/978-981-10-8663-2_23
    [7] Mehmood A, Nadeem A, Ashraf M, et al. A novel fall detection algorithm for elderly using Shimmer wearable sensors[J]. Health and Technology, 2019, 9(4): 631-646. doi:  10.1007/s12553-019-00298-4
    [8] Kerdjidj O, Ramzan N, Ghanem K, et al. Fall detection and human activity classification using wearable sensors and compressed sensing[J]. Journal of Ambient Intelligence and Humanized Computing, 2020, 11(1): 349-361. doi:  10.1007/s12652-019-01214-4
    [9] MIN W D, CUI H, RAO H, et al. Detection of human falls on furniture using scene analysis based on deep learning and activity characteristics[J]. IEEE Access, 2018, 6(99): 9324-9335. http://www.onacademic.com/detail/journal_1000040195826110_71bc.html
    [10] KONG Y Q, HUANG J H, HUANG S S, et al. Learning spatiotemporal representations for human fall detection in surveillance video[J]. Journal of Visual Communication and Image Representation, 2019, 59: 215-230. doi:  10.1016/j.jvcir.2019.01.024
    [11] QIU Z, LIANG X Q, CHEN Q Q, et al. Old man fall detection based on surveillance video object tracking[C]//Proceedings of 10th International Symposium on Parallel Architectures, Algorithms and Programming, 2019: 159-167.
    [12] FAN K B, WANG P, ZHUANG S. Human fall detection using slow feature analysis[J]. Multimedia Tools and Applications, 2019, 78: 9101-9128. doi:  10.1007/s11042-018-5638-9
    [13] Shota M, Jihoon H and Tomoaki O. A fall detection system using low resolution infrared array sensor[C]//Proceedings of 25th International Symposium on Personal, Indoor and Mobile Radio Communications of IEEE, 2014: 2109-2113.
    [14] 杨任兵, 程文播, 钱庆, 等. 红外图像中基于多特征提取的跌倒检测算法研究[J]. 红外技术, 2017, 39(12): 1131-1138. http://hwjs.nvir.cn/article/id/hwjs201712011

    YANG Renbing, CHENG Wenbo, QIAN Qing, et al. Research on fall detection algorithm based on multi-feature extraction in infrared image[J]. Infrared Technology, 2017, 39(12): 1131-1138. http://hwjs.nvir.cn/article/id/hwjs201712011
    [15] 王召军, 许志猛, 陈良琴. 基于红外阵列传感器的人体行为识别系统研究[J]. 红外技术, 2020, 42(3): 231-237. http://hwjs.nvir.cn/article/id/hwjs202003005

    WANG Zhaojun, XU Zhimeng, CHEN Liangqin. Human behavior recognition system based on infrared array sensors[J]. Infrared Technology, 2020, 42(3): 231-237. http://hwjs.nvir.cn/article/id/hwjs202003005
    [16] LIANG Q S, YU L, ZHAI X P, et al. Activity recognition based on thermopile imaging array sensor[C]//Proceedings of International Conference on Electro/Information Technology (EIT) of IEEE, 2018: 770-773.
  • 加载中
图(16) / 表(5)
计量
  • 文章访问数:  499
  • HTML全文浏览量:  86
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-10
  • 修回日期:  2021-01-12
  • 刊出日期:  2021-10-20

目录

    /

    返回文章
    返回