留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于全卷积网络的红外图像非均匀性校正算法

牟新刚 崔健 周晓

牟新刚, 崔健, 周晓. 基于全卷积网络的红外图像非均匀性校正算法[J]. 红外技术, 2022, 44(1): 21-27.
引用本文: 牟新刚, 崔健, 周晓. 基于全卷积网络的红外图像非均匀性校正算法[J]. 红外技术, 2022, 44(1): 21-27.
MOU Xingang, CUI Jian, ZHOU Xiao. Infrared Image Non-uniformity Correction Algorithm Based on Full Convolutional Network[J]. Infrared Technology , 2022, 44(1): 21-27.
Citation: MOU Xingang, CUI Jian, ZHOU Xiao. Infrared Image Non-uniformity Correction Algorithm Based on Full Convolutional Network[J]. Infrared Technology , 2022, 44(1): 21-27.

基于全卷积网络的红外图像非均匀性校正算法

基金项目: 

国家自然科学基金项目 61701357

中央高校基本科研业务费专项资金资助 183204007

详细信息
    作者简介:

    牟新刚(1982-),男,博士,副教授,主要研究方向光电成像与信息处理、红外图像处理。E-mail: sunnymou@whut.edu.cn

  • 中图分类号: TN219; TN911.73

Infrared Image Non-uniformity Correction Algorithm Based on Full Convolutional Network

  • 摘要: 针对红外成像系统在经过两点校正后,随时间漂移仍然会出现的非均匀性噪声,提出一种基于全卷积深度学习网络的红外图像非均匀性校正算法,使用子网络与主网络相结合的方式进行非均匀性校正。该算法设计了非均匀性等级估计子网络,将含有非均匀性噪声的红外图像输入子网络后,输出非均匀性等级估计图,并和待校正红外图像一并输入校正主网络。子网络生成的非均匀性等级估计图作为一个参数输入校正主网络,避免了网络只针对同一等级非均匀性产生过拟合。经过实验验证,该算法克服了传统的基于场景的算法所产生的边缘模糊问题,对条纹状非均匀性噪声校正效果较好,经过校正后的红外图像清晰度高、细节丰富、边缘清晰、图像质量良好。
  • 图  1  基于全卷积网络的特征算法实施流程

    Figure  1.  Algorithm of features based on fully convolutional network flow chart

    图  2  全卷积神经网络结构

    Figure  2.  Structure of the fully convolutional network

    图  3  非均匀性等级估计子网络

    Figure  3.  Non-uniformity level estimation subnetwork

    图  4  校正主网络

    Figure  4.  Main network of correction

    图  5  测试集PSNR图

    Figure  5.  PSNR of test data set

    图  6  测试集SSIM图

    Figure  6.  SSIM of test data set

    图  7  各算法校正效果

    Figure  7.  Results of each algorithm

    图  8  原始图片

    Figure  8.  Original Picture

    图  9  各算法校正效果

    Figure  9.  Results of eachcorrection

    表  1  子网络参数

    Table  1.   Parameters of the subnetwork

    Layer Filters Input Output
    Conv 3×3×32 256×256×1 256×256×32
    Conv 3×3×32 256×256×32 256×256×32
    Conv 3×3×32 256×256×32 256×256×32
    Conv 3×3×1 256×256×32 256×256×1
    下载: 导出CSV

    表  2  校正主网络参数

    Table  2.   Parameters of main network

    Layer Filters Input Output
    Conv 3×3×64 256×256×64 256×256×64
    Conv 3×3×64 256×256×64 256×256×64
    Conv 3×3×64 256×256×64 256×256×64
    Conv 3×3×64 256×256×64 256×256×64
    Conv 3×3×64 256×256×64 256×256×64
    Conv 3×3×64 256×256×64 256×256×64
    Conv 3×3×64 256×256×64 256×256×64
    Conv 3×3×64 256×256×64 256×256×64
    Conv 3×3×64 256×256×64 256×256×64
    Conv 3×3×64 256×256×64 256×256×64
    Conv 3×3×64 256×256×64 256×256×64
    Conv 3×3×1 256×256×1 256×256×1
    下载: 导出CSV

    表  3  各算法平均PSNR和SSIM

    Table  3.   PSNR and SSIM of each algorithm

    Algorithm BFTH MHE DLS DMRN Ours
    PSNR/dB 32.93 33.92 34.39 34.86 35.90
    SSIM 0.828 0.858 0.887 0.903 0.928
    下载: 导出CSV

    表  4  各算法平均粗糙度

    Table  4.   Roughness of each algorithm

    Algorithm BFTH MHE DLS DMRN Ours
    ρ 0.107 0.072 0.064 0.058 0.049
    下载: 导出CSV
  • [1] ZHOU Huixin, LI Qing, LIU Shangqian, et al. Nonuniformity and its correction principle of infrared focal plane arrays[J]. Laser & Infrared, 2003, 3(6): 46-48. http://www.researchgate.net/publication/293264376_Nonuniformity_and_its_correction_principle_of_infrared_focal_plane_arrays
    [2] Scribner D A, Sarkady K A, Kruer M R, et al. Adaptive nonuniformity correction for IR focal-plane arrays using neural networks[C]// International Society for Optics and Photonics, 1991: 100-109.
    [3] ZUO C, CHEN Q, GU G, et al. New temporal high-pass filter nonuniformity correction based on bilateral filter[J]. Optical Review, 2011, 18(2): 197-202. doi:  10.1007/s10043-011-0042-y
    [4] QIAN W, CHEN Q, GU G. Space low-pass and temporal high-pass nonuniformity correction algorithm[J]. Optical Review, 2010, 17(1): 24-29. doi:  10.1007/s10043-010-0005-8
    [5] Harris J G, Chiang Y M. Nonuniformity correction using the constant-statistics constraint: analog and digital implementations[C]// Proceedings of SPIE - The International Society for Optical Engineering, 1997, 3061: 895-905.
    [6] KUANG Xiaodong, SUI Xiubao, CHEN Qian, et al. Single infrared image stripe noise removal using deep convolutional networks[J]. IEEE Photonics Journal, 2017, 9(4): 1-13. http://www.onacademic.com/detail/journal_1000039958065210_b903.html
    [7] 赵春晖, 刘振龙. 改进的红外图像神经网络非均匀性校正算法[J]. 红外与激光工程, 2013, 42(4): 1079-1083. doi:  10.3969/j.issn.1007-2276.2013.04.044

    ZHAO Chunhui, LIU Zhenlong. Improved infrared image neural network non-uniformity correction algorithm[J]. Infrared and Laser Engineering, 2013, 42(4): 1079-1083. doi:  10.3969/j.issn.1007-2276.2013.04.044
    [8] 张龙, 董峰, 傅雨田. 基于神经网络的红外图像非均匀性校正[J]. 红外技术, 2018, 40(2): 164-169. http://hwjs.nvir.cn/article/id/hwjs201802011

    ZHANG Long, DONG Feng, FU Yutian. Non-uniformity correction for infrared image using neural networks[J]. Infrared Technology, 2018, 40(2): 164-169. http://hwjs.nvir.cn/article/id/hwjs201802011
    [9] MOU Xingang, LU Junjie, ZHOU Xiao, et al. Single frame infrared image adaptive correction algorithm based on residual network[C]//The 11th International Symposium on Photonics and Optoelectronics(SOPO), 2018: 17-23.
    [10] 牟新刚, 陆俊杰, 周晓. 基于残差编解码网络的红外图像自适应校正算法[J]. 红外技术, 2020, 42(9): 833-839. http://hwjs.nvir.cn/article/id/hwjs202009004

    MOU Xingang, LU Junjie, ZHOU Xiao. Adaptive correction algorithm of infrared image based on encoding and decoding residual network[J]. Infrared Technology, 2020, 42(9): 833-839. http://hwjs.nvir.cn/article/id/hwjs202009004
    [11] HE Zewei, CAO Yanpeng, DONG Yafei, et al. Single-image-based nonuniformity correction of uncooled long-wave infrared detectors: a deep-learning approach[J]. Applied Optics, 2018, 57(18): 155-164 doi:  10.1364/AO.57.00D155
    [12] ZHANG Kai, ZUO Wangmeng, ZHANG Lei. Ffdnet: Toward a fast and flexible solution for CNN based image denoising[C]//IEEE Transactions on Image Processing, 2017: 4608-4622.
    [13] GUO Shi, YAN Zifei, ZHANG Kai, et al. Toward convolutional blind denoising of real photographs[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019: 1712-1722.
    [14] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning, 2015: 448-456.
    [15] QIAN W, CHEN Q, GU G. Space low-pass and temporal high-pass nonuniformity correction algorithm[J]. Optical Review, 2010, 17(1): 24-29. doi:  10.1007/s10043-010-0005-8
    [16] CHANG Y, YAN L, LIU L, et al. Infrared Aerothermal nonuniform correction via deep multiscale residual network[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(7): 1120-1124. doi:  10.1109/LGRS.2019.2893519
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  259
  • HTML全文浏览量:  77
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-08
  • 修回日期:  2021-04-25
  • 刊出日期:  2022-01-20

目录

    /

    返回文章
    返回