留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黑硅光电探测材料与器件研究进展

王博 唐利斌 张玉平 邓功荣 左文彬 赵鹏

王博, 唐利斌, 张玉平, 邓功荣, 左文彬, 赵鹏. 黑硅光电探测材料与器件研究进展[J]. 红外技术, 2022, 44(5): 437-452.
引用本文: 王博, 唐利斌, 张玉平, 邓功荣, 左文彬, 赵鹏. 黑硅光电探测材料与器件研究进展[J]. 红外技术, 2022, 44(5): 437-452.
WANG Bo, TANG Libin, ZHANG Yuping, DENG Gongrong, ZUO Wenbin, ZHAO Peng. Research Progress of Black Silicon Photoelectric Detection Materials and Devices[J]. Infrared Technology , 2022, 44(5): 437-452.
Citation: WANG Bo, TANG Libin, ZHANG Yuping, DENG Gongrong, ZUO Wenbin, ZHAO Peng. Research Progress of Black Silicon Photoelectric Detection Materials and Devices[J]. Infrared Technology , 2022, 44(5): 437-452.

黑硅光电探测材料与器件研究进展

基金项目: 

国家重点研发计划 2019YFB2203404

云南省创新团队项目 2018HC020

详细信息
    作者简介:

    王博(1996-),男,硕士研究生,研究方向是黑硅光电探测材料与器件

    通讯作者:

    唐利斌(1978-),男,正高级工程师,博士生导师,主要从事光电材料与器件的研究。E-mail: scitang@163.com

  • 中图分类号: TN36

Research Progress of Black Silicon Photoelectric Detection Materials and Devices

  • 摘要: 黑硅作为一种新型光电材料,在光伏太阳能电池、光电探测器、CMOS图像传感器等领域被广泛研究,其中黑硅的光电探测技术备受关注,近些年来也取得了重要的研究进展。本文首先简单介绍了黑硅材料的结构,然后讨论了基于飞秒激光刻蚀法、湿法腐蚀、反应离子刻蚀法等方法制备的黑硅材料的性质。其次概述了基于以上方法制备的不同黑硅光电探测器的结构及性能,并讨论了黑硅器件在不同领域的应用。最后对黑硅光电探测技术进行了分析与展望,探讨了黑硅材料及器件未来的发展方向。
  • 图  1  不同方法制备的黑硅的吸收率:(a) 湿法刻蚀[12];(b) 反应离子刻蚀[28];(c) 飞秒激光刻蚀[10];(d) 飞秒激光刻蚀[29];(e)湿法刻蚀[30];(f) 湿法刻蚀[31]

    Figure  1.  Absorptance of different black silicon prepared by various methods: (a) Wet etching[12]; (b) Reactive ion etching[28]; (c) Femtosecond-laser etching[10]; (d) Femtosecond-laser etching[29]; (e) Wet etching [30]; (f) Wet etching[31]

    图  2  n+/n型黑硅光电探测器:(a)和(b)器件响应率及响应电流[6];(c)和(d)器件结构及响应电流[32];(e)和(f)器件结构及响应率[16];(g)器件响应率及探测率[33];(h)和(i)器件结构及响应率[20, 35]

    Figure  2.  n+/n type of black silicon photodetector: (a) and (b) Device responsivity and response current[6]; (c) and (d) Device structure and response current[32]; (e) and (f) Device structure and responsivity[16]; (g) Device responsivity and detectivity[33]; (h) and (i) Device structure and responsivity[20, 35]

    图  3  n+/p型黑硅光电探测器:(a)和(b)器件结构及外量子效率[9];(c)和(d)器件结构及响应率[10];(e)和(f)器件结构及响应率[11];(g)、(h)和(i)黑硅吸收率、器件结构及响应率[13, 36]

    Figure  3.  n+/p type of black silicon photodetector: (a) and (b) device structure and EQE[9]; (c) and (d) device structure and responsivity[10]; (e) and (f) device structure and responsivity[11]; (g), (h) and (i) absorptance of black silicon, device structure and responsivity[13, 36]

    图  4  PIN型黑硅光电探测器:(a)和(b)器件结构及响应率[19];(c)和(d)器件结构及模拟响应率[37];(e) 器件结构[38];(f) 器件响应率[27];(g)器件结构[22];(h)器件响应率[24]

    Figure  4.  PIN type of black silicon photodetector: (a) and (b) Device structure and responsivity[19]; (c) and (d) Device structure and analog responsivity[37]; (e) Device structure[38]; (f) Device responsivity[27]; (g) Device structure[22]; (h) Device responsivity[24]

    图  5  飞秒激光制备的其他黑硅光电探测器:(a)和(b)器件结构及响应率[39];(c)、(d)和(e)器件结构及I-V曲线[40];(f)和(g)器件结构[41];(h) 器件结构[42-43]

    Figure  5.  Other black silicon photodetectors prepared by femtosecond laser: (a) and (b) Device structure and responsivity[39]; (c), (d) and (e) Device structure and I-V curve[40]; (f) and (g) Device structure[41]; (h) Device structure[42-43]

    图  6  湿法腐蚀制备的黑硅光电探测器结构及性能图:(a) 器件结构[45];(b)和(c) 器件结构及响应率[12];(d) 器件结构[14];(e)器件结构[32];(f) 器件响应率[47];(g) 器件响应率[30];(h) 器件响应率[17];(i) 器件结构[51]

    Figure  6.  Structures and properties diagram of black silicon photodetector prepared by wet etching. (a) Device structure [45]; (b) and (c) Device structure and responsivity[12]; (d) Device structure[14]; (e) Device structure[32]; (f) Device responsivity[47]; (g) Device responsivity[30]; (h) Device responsivity[17]; (i) Device structure[51]

    图  7  干法腐蚀制备的黑硅光电探测器结构及性能图:(a) 黑硅结构[56];(b)和(c) 器件EQE及内量子效率(IQE)[28];(d) 器件结构[15];(e)和(f) 器件结构及响应率[30];(g) 器件的EQE[57];(h) 黑硅微结构[58]

    Figure  7.  Structures and properties diagram of black silicon photodetector prepared by dry etching. (a) Microstructure of black silicon[56]; (b) and (c) EQE and IQE of device[28]; (d) Device structure[15]; (e) and (f) Device structure and responsivity[30]; (g) EQE of device[57]; (h) Microstructure of black silicon[58]

    图  8  黑硅光电探测器应用及效果图:(a)和(b) CMOS成像效果[59];(c) 探测器结构阵列[60];(d) CMOS与CCD成像对比[61];(e)器件结构[62];(f) 柔性黑硅光电探测器[64];(g) CMOS成像效果[24];(h) CMOS成像效果[66]

    Figure  8.  Application and rendering of black silicon photodetector: (a) and (b) CMOS imaging effect[59]; (c) Detector array[60]; (d) CMOS and CCD imaging contrast[61]; (e) Device structure[62]; (f) Flexible black silicon photodetector[64]; (g) CMOS imaging effect[24]; (h) CMOS imaging effect[66]

    表  1  黑硅光电探测器结构及性能参数

    Table  1.   The structures and performance parameters of black silicon photodetectors

    Year Preparation method Structure Bias voltage/V Dark current Max responsivity/(A/W) EQE/% Wavelength range/nm Ref.
    2005 Femtosecond-laser pulses n+/n -0.5 0.12 mA/cm2 120 - 400-1600 [5]
    2006 Femtosecond-laser pulses n+/n -3 2.3 μA 119 - 700-1200 [6]
    2010 - Photodiode - 120 nA/cm2 100 68 400-1200 [7]
    2011 Wet etching MSM -1 - 58.8 - 400-700 [8]
    2011 Nanosecond-laser pulses n+/p -12 - - 2500 700-1080 [9]
    2012 Femtosecond-laser pulses n+/p -30 5 mA 300 - 240-1100 [10]
    2012 Picosecond-laser pulses n+/p -5 - 16 - 400-1600 [11]
    2013 Alkaline etching and metal assisted etching MSM -1 - 76.8 -
    400-700 [12]
    2013 Femtosecond-laser pulses n+/p -16 - 3.27 380 400-1200 [13]
    2014 Electrochemical etching PIN - - 0.35 - 800-1100 [14]
    2015 Inductively coupled plasma reactive ion etching PIN -1 150 mA/cm2 0.34 27 400-1640 [15]
    2015 Femtosecond-laser pulses n+/n -3 10 μA 351 - 400-1600 [16]
    2016 Metal-assisted chemical etching PIN -12 - 0.57 - 900-1100 [17]
    2017 Inductively coupled plasma -reactive ion etching Photodiode - - - > 100 235-1200 [18]
    2017 Femtosecond-laser pulses PIN - - 0.57 - 900-1100 [19]
    2018 Nanosecond-laser pulses n+/n- -5 - 8 1007 400-1310 [20]
    2019 Wet chemical etching Schottky -10 - 0.000458 - 1200-1600 [21]
    2019 Femtosecond-laser pulses PIN -12 < 1 nA 0.57 66.7 900-1100 [22]
    2020 Femtosecond-laser pulses n+-i -20 - 1097.60 - 400-1600 [23]
    2020 Femtosecond-laser pulses PIN -0.1 - 0.56 - 1000-1200 [24]
    2020 Femtosecond-laser pulses Photodiode -2 5.0 μA/cm2 120.6 - 400-1600 [25]
    2021 Femtosecond-laser pulses Schottky -10 - 0.076 - 1310 [26]
    2021 Femtosecond-laser pulses PIN - 700 pA 0.55 80 400-1100 [27]
    下载: 导出CSV
  • [1] Her T, Finlay R J, WU C, et al. Microstructuring of silicon with femtosecond laser pulses[J]. Applied Physics Letters, 1998, 73(12): 1673-1675. doi:  10.1063/1.122241
    [2] 马世俊. 黑硅光电探测器关键技术研究[D]. 成都: 电子科技大学, 2018.

    MA Shijun. Study on the Key Technology of the Black Silicon Optoelectronic Detector[D]. Chengdu: University of Electronic Science and Technology of China, 2018.
    [3] Chou S, Krauss P, Renstrom P, et al. Imprint lithography with 25- nanometer resolution[J]. Science, 1996, 272(5258): 85-87. doi:  10.1126/science.272.5258.85
    [4] CHOU S, Keimel C, GU J, et al. Ultrafast and direct imprint of nanostructures in silicon[J]. Nature, 2002, 417(6891): 835-837. doi:  10.1038/nature00792
    [5] Carey J, Crouch C, SHEN M, et al. Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes[J]. Optics Letters, 2005, 30(14): 1773-1775. doi:  10.1364/OL.30.001773
    [6] HUANG Z, Carey J, LIU M, et al. Microstructured silicon photodetector[J]. Applied Physics Letters, 2006, 89: 033506. doi:  10.1063/1.2227629
    [7] Pralle M U, Carey J E, Homayoon H, et al. Black silicon enhanced photodetectors: a path to IR CMOS[C]//Proc. of SPIE, 2010, 7660: 76600N.
    [8] SU Y, JIANG Y, WU Z, et al. Spectral response of metal -semiconductor -metal photodetector based on black silicon[J]. Energy Procedia, 2011, 12: 615-619. doi:  10.1016/j.egypro.2011.10.083
    [9] Said A, Recht D, Sullivan J, et al. Extended infrared photoresponse and gain in chalcogen-supersaturated silicon photodiodes[J]. Applied Physics Letters, 2011, 99(7): 1850-236.
    [10] 刘长江. 基于飞秒激光非平衡掺杂技术黑硅材料的制备与光电器件研究[D]. 长春: 吉林大学, 2012.

    LIU Changjiang. The Fabrication of Black Silicon and its Application in Optoelectronic Devices Based on Femtosecond Laser Non-equilibrium Doping Technique[D]. Changchun: Jilin University, 2012.
    [11] HU S, HAN P, WANG S, et al. Improved photoresponse characteristics in Se -doped Si photodiodes fabricated using picosecond pulsed laser mixing[J]. Semiconductorence & Technology, 2012, 27(10): 102002.
    [12] SU Y, LI S, WU Z, et al. High responsivity MSM black silicon photodetector[J]. Materials Science in Semiconductor Processing, 2013, 16(3): 619-624. doi:  10.1016/j.mssp.2012.11.008
    [13] WANG X. Fabrication of tellurium doped silicon detector by fmtosecond laser and excimer laser[J]. Chinese Journal of Lasers, 2013, 40(3): 0302001. doi:  10.3788/CJL201340.0302001
    [14] 余峰. 微结构硅的制备及其PIN单元器件试制[D]. 成都: 电子科技大学, 2014.

    YU Feng. Fabrication of Microstructured Silicon and its Application in PIN Photodetector[D]. Chengdu: University of Electronic Science and Technology of China, 2014.
    [15] Steglich M, Oehme M, Käsebier T, et al. Ge-on-Si photodiode with black silicon boosted responsivity[J]. Appl. Phys. Lett. , 2015, 107: 051103. doi:  10.1063/1.4927836
    [16] 赵丽. 黑硅光电探测器的制备及性能研究[D]. 天津: 南开大学, 2015.

    ZHAO Li. A Research on Fabrication and Properties of Black Silicon Photodetector[D]. Tianjin: Nankai University, 2015.
    [17] ZHONG H, GUO A, GUO G, et al. The enhanced light absorptance and device application of nanostructured black silicon fabricated by metal-assisted chemical etching[J]. Nanoscale Research Letters, 2016, 11: 322. doi:  10.1186/s11671-016-1528-0
    [18] Heinonen J, Juntunen M, Laine H S, et al. Black silicon n-type photodiodes with high response over wide spectral range[C]//Proc. of SPIE, 2017, 10231: 102310X.
    [19] MENG W, ZHONG H, HOU W, et al. Comparison of different etching methods on the morphology and semiconductor characters of black silicon[C]//IOP Conf. Series: Materials Science and Engineering, 2017, 250: 012015.
    [20] ZHAO J, LI C, LI X, et al. NIR photodetector based on nanosecond laser-modified silicon[J]. IEEE Transactions On Electron Devices, 2018, 65(11): 4905-4909. doi:  10.1109/TED.2018.2869912
    [21] HU F, DAI X, ZHOU Z, et al. Black silicon Schottky photodetector in subbandgap near-infrared regime[J]. Optics Express, 2019, 27(3): 3161-3168. doi:  10.1364/OE.27.003161
    [22] 钟豪. 晶体硅表面的刻蚀与元素掺杂及其物理效应[D]. 成都: 电子科技大学, 2019.

    ZHONG Hao. Surface Etching and Doping on Monocrystalline Silicon and The Resulted Physical Effects[D]. Chengdu: University of Electronic Science and Technology of China, 2019.
    [23] HUANG S, WU Q, JIA Z, et al. Black silicon photodetector with excellent comprehensive properties by rapid thermal annealing and hydrogenated surface passivation[J]. Advanced Optical Materials, 2020, 9(7): 1901808.
    [24] 王稞. 微结构硅基材料的超饱和掺杂及其光电特性的研究[D]. 长春: 中国科学院大学长春光学精密机械与物理研究所, 2020.

    WANG Ke. Study on Hyperdoping and Photoelectric Properties of Microstructured Silicon-Based Material[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2020.
    [25] JIA Z, WU Q, JIN X, et al. Highly responsive tellurium-hyperdoped black silicon photodiode with single-crystalline and uniform surface microstructure[J]. Optics Express, 2020, 28(4): 5239-5247. doi:  10.1364/OE.385887
    [26] YANG Y, ZHAO J, LI C, et al. Sub-bandgap absorption and photo-response of molybdenum heavily doped black silicon fabricated by a femtosecond laser[J]. Optics Letters, 2021, 46(13): 3300-3303. doi:  10.1364/OL.425803
    [27] 郑泽宇, 罗谦, 徐开凯, 等. 基于黑硅微结构的全硅PIN光电探测器[J]. 光电工程, 2021, 48(5): 200364. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202105005.htm

    ZHENG Zeyu, LUO Qian, XU Kaikai, et al. All-silicon PIN photodetector based on black silicon microstructure[J]. Opto-Electronic Engineering, 2021, 48(5): 200364. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202105005.htm
    [28] Martin S, Matthias Z, Astrid B, et al. A normal-incidence PtSi photoemissive detector with black silicon light-trapping[J]. Journal of Applied Physics, 2013, 114: 183102. doi:  10.1063/1.4829897
    [29] Younkin R, Carey J, Mazur E, et al. Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses[J]. Journal of Applied Physics, 2003, 93(5): 2626-2629. doi:  10.1063/1.1545159
    [30] 盛浩. PIN黑硅原理性探测器试制[D]. 成都: 电子科技大学, 2016.

    SHENG Hao. An Investigation of Si-Pin Photodetector Based on Black Silicon[D]. Chengdu: University of Electronic Science and Technology of China, 2016.
    [31] Shahnawaz U, Md R H, Mohd Z P. Aluminium-assisted chemical etching for fabrication of black silicon[J]. Materials Chemistry and Physics, 2021, 265: 124469. doi:  10.1016/j.matchemphys.2021.124469
    [32] 王健波. 黑硅材料的制备及器件研究[D]. 成都: 电子科技大学, 2015.

    WANG Jianbo. Study of Preparation and Related Device of Black Silicon[D]. Chengdu: University of Electronic Science and Technology of China, 2015.
    [33] JIN X, WU Q, HUANG S, et al. High-performance black silicon photodetectors operating over a wide temperature range[J]. Optical Materials, 2021, 113: 110874. doi:  10.1016/j.optmat.2021.110874
    [34] YU X, LV Z, LI C, et al. The optical and electrical properties of Co-doped black silicon textured by a femtosecond laser and Its Application to Infrared Light Sensing[J]. IEEE Sensors Journal, 2016, 16(13): 5227-5231. doi:  10.1109/JSEN.2016.2564500
    [35] ZHAO J, LV Z, LI C, et al. Infrared photodiode of textured silicon irradiated under mixed gas by femtosecond laser[J]. IEEE Sensors Journal, 2017, 17(4): 1000-1004.
    [36] WANG X, HUANG Y, LIU D, et al. High response in a tellurium -supersaturated silicon photodiode[J]. Chinese Physics Letters, 2013, 30(3): 36101-036101. doi:  10.1088/0256-307X/30/3/036101
    [37] 宣曜宇. 飞秒激光诱导的Si能级调控及近红外增强探测器研究[D]. 成都: 电子科技大学, 2017.

    XUAN Yaoyu. Research of the Energy Level in Si Induced by Femtosecond Laser and the Performance of Enhanced Near Infrared Detector[D]. Chengdu: University of Electronic Science and Technology of China, 2017.
    [38] 郭国辉. 黑硅PIN四象限探测器研究[D]. 成都: 电子科技大学, 2017.

    GUO Guohui. An Investigation of Si-PIN Four Quadrant Photodetector Based On Black Silicon[D]. Chengdu: University of Electronic Science and Technology of China, 2017.
    [39] 王延超. 微结构硅基近红外材料及其光电特性研究[D]. 长春: 中国科学院大学长春光学精密机械与物理研究所, 2017.

    WANG Yanchao. Microstructure Silicon-based Near-infrared Materials and its Optics, Photoelectric Characteristics Research[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2017.
    [40] 于心月. 飞秒激光过渡金属的过饱和掺杂黑硅的研究[D]. 长春: 吉林大学, 2018.

    YU Xinyue. Study on Supersaturated Doped Black Silicon with Transition Metal by Femtosecond Laser[D]. Changchun: Jilin University, 2018.
    [41] 李春昊. 脉冲激光黑硅材料的制备及红外光电器件研究[D]. 长春: 吉林大学, 2018.

    LI Chunhao. Research of Black Si Material Fabricated by Pulsed Laser Irradiation and its Applications in Infrared Optoelectronic Detections[D]. Changchun: Jilin University, 2018.
    [42] 祝威. 近红外增强型硅双四象限光电探测器研究[D]. 成都: 电子科技大学, 2020.

    ZHU Wei. Research on Double Quadrants Silicon Photoelectric Detector with Near Infrared Enhancement[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
    [43] MI G, LV J, QUE L, et al. A Dual Four-Quadrant Photodetector Based on Near-Infrared Enhanced Nanometer Black Silicon[J]. Nanoscale Research Letters, 2021, 16: 38. doi:  10.1186/s11671-021-03499-x
    [44] MA S, LIU X, SUN H, et al. Enhanced responsivity of co-hyperdoped silicon photodetectors fabricated by femtosecond laser irradiation in a mixed SF6/NF3 atmosphere[J]. Journal of the Optical Society of America B, 2020, 37(3): 730-735. doi:  10.1364/JOSAB.374044
    [45] 苏元捷, 蒋亚东, 吴志明, 等. 势垒层对黑硅光电探测器性能影响的研究[J]. 光电子·激光, 2011, 22(10): 1339-1442. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201110001.htm

    SU Yuanjie, JIANG Yadong, WU Zhiming, et al. Influence of barrier layer on photoelectric properties of black silicon photodetectors[J]. Journal of Optoelectronics·Laser, 2011, 22(10): 1339-1442. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201110001.htm
    [46] 张婷. 黑硅的湿法制备工艺及近红外探测应用研究[D]. 成都: 电子科技大学, 2014.

    ZHANG Ting. Preparation and Near-Infrared Detection Research of Black Silicon[D]. Chengdu: University of Electronic Science and Technology of China, 2014.
    [47] 廖家科. 微纳结构硅的制备及齐建华应用研究[D]. 成都: 电子科技大学, 2015.

    LIAO Jiake. Fabrication of Micro/Nano Structured Silicon and its Application in Photoelectrical Detector[D]. Chengdu: University of Electronic Science and Technology of China, 2015.
    [48] Hamamatsu Photonics. Silicon photodiode S1336-44BK for UV to near IR precision photometry[DB/OL]. http://www.hamamatsu.com.cn/product/17581.html.
    [49] Moloney A M, Wall L, Mathewson A, et al. Novel black silicon PIN photodiodes[C]//Proc. of SPIE, 2006, 6119: 61190B.
    [50] 宋轶佶. 拓宽黑硅吸收光谱范围技术研究[D]. 成都: 电子科技大学, 2020.

    SONG Yiji. Study on the Technology of Broadening the Absorption Spectrum Range of Black Silicon[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
    [51] 王文革, 李华高, 龙飞, 等. 黑硅微结构光敏二极管[J]. 半导体光电, 2015, 36(6): 892-894. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG201506008.htm

    WANG Wenge, LI Huagao, LONG Fei, et al. Black silicon microstructure photodiodes[J]. Semiconductor Optoelectronics, 2015, 36(6): 892-894. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG201506008.htm
    [52] 黄建, 雷仁方, 江海波, 等. 基于湿法腐蚀工艺的高性能黑硅光电探测器[J]. 半导体光电, 2021, 42(4): 506-510. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG202104003.htm

    HUANG Jian, LEI Renfang, JIANG Haibo, et al. High performance black silicon photodetector based on wet etching process[J]. Semiconductor Optoelectronics, 2021, 42(4): 506-510. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG202104003.htm
    [53] 王锦, 陶科, 李国峰, 等. 倒金字塔结构的黑硅PIN光电探测器的研究[J]. 光电子·激光, 2018, 29(12): 1270-1274. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201812003.htm

    WANG Jin, TAO Ke, LI Guofeng, et al. Study of black silicon PIN photo-detector with inverted pyramidal structure[J]. Journal of Optoelectronics·Laser, 2018, 29(12): 1270-1274. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201812003.htm
    [54] Müllerová J, Scholtza L, Ďurišováb J, et al. Angle- and polarization resolved antireflection properties of black silicon prepared by electrochemical etching supported by external electric field[J]. Applied Surface Science, 2018, 461: 182-189. doi:  10.1016/j.apsusc.2018.05.179
    [55] XU G, CHENG S, CAI B. Black silicon as absorber for photo- thermal -electric devices[J]. Materials Express, 2018, 8(3): 294-298. doi:  10.1166/mex.2018.1426
    [56] HUANG Y, Chattopadhyay S, Jen Y J, et al. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures[J]. Nature Nanotechnology, 2007, 2(12): 770-774. doi:  10.1038/nnano.2007.389
    [57] Heinonen J, Haarahiltunen A, Serue M D, et al. High-sensitivity NIR photodiodes using black silicon[C]//Proc. of SPIE, 2020, 11276: 112760G.
    [58] Kim K, Yoon S, Seo M, et al. Whispering gallery modes enhance the near-infrared photoresponse of hourglass-shaped silicon nanowire photodiodes[J]. Nature Electronics, 2019, 2(12): 572-579. doi:  10.1038/s41928-019-0317-z
    [59] Pralle M, Carey J, Homayoon H, et al. IR CMOS: infrared enhanced silicon imaging[C]//Proc. of SPIE, 2013, 8704: 870407.
    [60] Petersen S D, Davidsen R S, Alcalá L R, et al. Improvement of infrared detectors for tissue oximetry using black silicon nanostructures[J]. Procedia Engineering, 2014, 87: 652-655. doi:  10.1016/j.proeng.2014.11.572
    [61] Pralle M, Carey J, Vineis C, et al. IR CMOS: the digital nightvision solution to sub-1 mLux imaging[C]//Proc. of SPIE, 2015, 9451: 945108.
    [62] Juntunen M A, Heinonen J, Vähänissi V, et al. Near-unity quantum efficiency of broadband black silicon photodiodes with an induced junction[J]. Nature Photonics, 2016, 10(12): 777-781. doi:  10.1038/nphoton.2016.226
    [63] Garin M, Heinonen J, Werner L, et al. Black-silicon ultraviolet photodiodes achieve external quantum efficiency above 130%[J]. Physical Review Letters, 2020, 125: 117702. doi:  10.1103/PhysRevLett.125.117702
    [64] JIN X, SUN Y, WU Q, et al. High-performance free-standing flexible photodetectors based on sulfur-hyperdoped ultrathin silicon[J]. ACS Applied Materials and Interfaces, 2019, 11: 42385-42391. doi:  10.1021/acsami.9b16667
    [65] 申朝阳. 微纳米结构增强硅基太赫兹功能器件研究[D]. 成都: 电子科技大学, 2020.

    SHEN Chaoyang. Research on Micro-Nano Structure Enhanced Silicon- based Terahertz Functional Devices[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
    [66] Pralle M, Vineis C, Palsule C, et al. Ultra low light CMOS image sensors[C]//Proc. of SPIE, 2021, 11741: 117410E.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  350
  • HTML全文浏览量:  208
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-15
  • 修回日期:  2022-05-09
  • 刊出日期:  2022-05-20

目录

    /

    返回文章
    返回