留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Strategy of Barrel Roll and Decoy Deployment Against Infrared Air-to-Air Missile

ZHANG Nan CHEN Changsheng SUN Jingguo LIANG Xuechao

张楠, 陈长胜, 孙靖国, 梁雪超. 基于桶滚机动和诱饵投射的红外空空导弹对抗策略研究[J]. 红外技术, 2022, 44(3): 236-248.
引用本文: 张楠, 陈长胜, 孙靖国, 梁雪超. 基于桶滚机动和诱饵投射的红外空空导弹对抗策略研究[J]. 红外技术, 2022, 44(3): 236-248.
ZHANG Nan, CHEN Changsheng, SUN Jingguo, LIANG Xuechao. Strategy of Barrel Roll and Decoy Deployment Against Infrared Air-to-Air Missile[J]. Infrared Technology , 2022, 44(3): 236-248.
Citation: ZHANG Nan, CHEN Changsheng, SUN Jingguo, LIANG Xuechao. Strategy of Barrel Roll and Decoy Deployment Against Infrared Air-to-Air Missile[J]. Infrared Technology , 2022, 44(3): 236-248.

基于桶滚机动和诱饵投射的红外空空导弹对抗策略研究

详细信息
  • 中图分类号: TJ765.3

Strategy of Barrel Roll and Decoy Deployment Against Infrared Air-to-Air Missile

More Information
    Author Bio:

    ZHANG Nan (1987-), Male, Xi'an Shaanxi, Master degree, Mainly engaged in the research of avionics bus network and guidance. E-mail: 550100308@qq.com

  • 摘要: 机动规避和投射诱饵是战斗机对抗红外空对空导弹的有效措施。本文主要从桶滚机动和无动力型点源诱饵两方面进行了对抗策略研究。为了使研究更具实用性,在考虑桶滚机动所需条件和诱饵弹受力的前提下,阐述了诱饵弹的运动特性、干扰过程和对导弹制导系统的影响机理。为使研究更具适用性,本文假设空对空导弹采用真比例导引律或增广比例导引律,并且诱饵考虑在常规模式和应急模式下投射。建立了桶滚机动并伴有诱饵投射时对导弹制导精度影响的线性化时变模型和伴随模型。同时,通过仿真结果的分析与比较,验证了模型的正确性。脱靶量是表征防空导弹性能的一个重要参数,提出了平均脱靶量和最大脱靶量占比来分析伴随模型的仿真结果。在此基础上,分析了目标机的桶滚机动角速率和过渡机动方位角以及诱饵弹的齐投数量、投射间隔与投射方向策略对导弹脱靶量的影响规律。这将为战斗机对抗红外空对空导弹提供策略参考。
  • Figure  1.  The process of air-to-air missile anti-interference

    Figure  2.  Schematic diagram of barrel roll maneuver

    Figure  3.  Pulse input of acceleration signal in the Y direction

    Figure  4.  Influence model of power centroid under barrel roll

    Figure  5.  The process of decoy interference

    Figure  6.  Motion model of power centroid under decoy interference

    Figure  7.  Linearized model of air-to-air missile

    Figure  8.  Acceleration change of the power centroid and the target in the Y-direction

    Figure  9.  Velocity change of the power centroid and the target in the Y-direction

    Figure  10.  Position change of the power centroid and the target in the Y-direction

    Figure  11.  Miss distance comparison for time-forward simulation and adjoint simulation

    Figure  12.  The trajectory diagram and the change of velocity vs time

    Figure  13.  The variation curves of miss distance vs tgo for different barrel roll rates

    Figure  14.  Analysis of the average miss distance and the percentage of the maximum miss distance

    Figure  15.  Average miss distance and percentage of maximum miss distance vs initial phase angle of barrel roll maneuver

    Figure  16.  Miss distance vs tgo for different simultaneous launch quantity

    Figure  17.  The variation curve of the average miss distance under different launch policies in conventional launch mode

    Table  1.   Weight coefficients of power centroid

    Target and decoys tstep $\begin{array}{l} {t_{{\text{step}}}} \hfill \\ + \frac{{{t_{ab}}}}{2} \hfill \\ \end{array} $ $\begin{array}{l} {t_{{\text{step}}}} \hfill \\ + {t_{ab}} \hfill \\ \end{array} $ $\begin{array}{l} {t_{{\text{step}}}} \hfill \\ + \frac{{3{t_{ab}}}}{2} \hfill \\ \end{array} $ $\begin{array}{l} {t_{{\text{step}}}} \hfill \\ + \frac{{m{t_{ab}}}}{2} \hfill \\ \end{array} $
    Target K1 K3 K3 K3 K3
    Decoy 1 K2 K4 0 0 0
    Decoy 2 0 K4 K4 0 0
    Decoy 3 0 0 K4 K4 $ \ddots $ 0
    $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \ddots $ $ \ddots $ 0
    Decoy m 0 0 0 0 K4 K4
    下载: 导出CSV

    Table  2.   Simulation parameters

    Symbol/unit Values Symbol/unit Values
    tmax/s 7 ζ 0.707
    τSH/s 0.11 N 3.5
    τN/s 0.1 Vc/(m/s) 1200
    τAP/s 0.14 tab/s 0.4
    ωM/(rad/s) 19 ϕ0/deg 45
    下载: 导出CSV

    Table  3.   The average miss of missile in the emergency launch mode

    Guidance law First policy Second policy Third policy Fourth policy
    TPN 85.55 99.57 92.10 92.29
    APN 87.28 103.71 94.71 95.01
    下载: 导出CSV
  • [1] Raghav Harini Venkatesan, Nandan Kumar Sinha. Key factors that affect the performance of flares against a heat-seeking air-to-air missile[J]. The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology, 2014, 11(4): 387-401. doi:  10.1177/1548512913511357
    [2] Giovanni Franzini, Luca Tardioli, Lorenzo Pollini, et al. Visibility augmented proportional navigation guidance[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(4): 983-991. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/020411730080.html
    [3] XU Yang, FANG Yangwang, WU Youli, et al. Proportional guidance intelligent regulation strategy under the infrared interference and maneuvering[J]. Journal of National University of Defense Technology, 2019, 41(3): 137-145. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204112887337.html
    [4] Paul Zarchan. Tactical and strategic missile guidance[M]. the 6th, AIAA, 2012.
    [5] WANG Xiaohai, MENG Xiuyun, ZHOU Feng, et al. Sliding mode guidance law with impact angle constraint based on bias proportional navigation[J]. Systems Engineering and Electronics, 2021, 43(5): 1295-1302. doi:  10.1007%2Fs11071-012-0482-3
    [6] LI Kebo, LIANG Yangang, SU Wenshan, et al. Performance of 3D TPN against true-arbitrarily maneuvering target for exoatmospheric interception[J]. Science China Technological Sciences, 2018, 61(8): 1161-1174. doi:  10.1007/s11431-018-9310-5
    [7] LEE Suwon, LEE Youngjun, LEE Seokwon, et al. Data-driven capturability analysis for pure proportional navigation guidance considering target maneuver[J]. International Journal of Aeronautical and Space Sciences, 2021, 22(5): 1209-1221. doi:  10.1007/s42405-021-00387-7
    [8] LI Kebo, LIAO Xuanping, LIANG Yangang, et al. Guidance strategy with impact angle constraint based on pure proportional navigation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 724277.
    [9] Satadal Ghosh, Debasish Ghose, Soumyendu Raha. Composite guidance for impact angle control against higher speed targets[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(1): 98-117. doi:  10.2514/1.G001232
    [10] LI Kebo, LIANG Yangang, SU Wenshan, et al. Performance of 3D TPN against true-arbitrarily maneuvering target for exoatmospheric interception[J]. Science China Technological Sciences, 2018, 61(8): 1161-1174. doi:  10.1007/s11431-018-9310-5
    [11] FENG Tyan. The capture region of a general 3D TPN guidance law for missile and target with limited maneuverability[C]//Proc. American Control Conference, 2001: 512-517.
    [12] BAI Zhihui, LI Kebo, SU Wenshan, et al. Capture region of RTPN guidance law against arbitrarily maneuvering targets[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 323947.
    [13] SHI Zhenqing, LIANG Xiaolong, ZHANG Jiaqiang, et al. Modeling and simulation analysis of 3-D air-to-air missile attack zone under the condition of target maneuvers[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2019, 39(3): 97-106. http://en.cnki.com.cn/Article_en/CJFDTotal-DJZD201903023.htm
    [14] Ernst-Christian Koch. Review on pyrotechnic aerial infrared decoys[J]. Propellants, Explosives, Pyrotechnics, 2011, 26(1): 3-11. doi:  10.1002/1521-4087(200101)26:1%3C3::AID-PREP3%3E3.0.CO;2-8/abstract
    [15] Ilan Rusnak. Bounds on the root-mean-square miss of radar-guided missiles against sinusoidal target maneuvers[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(4): 1066-1069. doi:  10.2514/1.52460
    [16] Fumiaki Imado and Sachio Uehara. High-g barrel roll maneuvers against proportional navigation from optimal control viewpoint[J]. Journal of Guidance, Control, and Dynamics, 1988, 21(6): 876-881. http://www.onacademic.com/detail/journal_1000035874227010_0f7b.html
    [17] Timo Sailaranta, Ari Siltavuori, Antti Pankkonen. Simple missile models against high-g barrel roll maneuver[C]//Proc. AIAA Guidance, Navigation, and Control Conference, 2011: 01-12.
    [18] Ernst Christian Koch, Arno Hahma, Volker Weiser, et al. Metal-Fluorocarbon Pyrolants. XIII: High performance infrared decoy flare compositions based on MgB2 and Mg2Si and polytetrafluoroe-thylene/viton[J]. Propellants Explosives Pyrotechnics, 2010, 35: 1-7.
    [19] Srinivasan Ramaswam, David A Vaitekunas, Willem H Gunter, et al. Improvements to the ShipIR/NTCS adaptive track gate algorithm and 3D flare particle model[C]//Proc. SPIE Defense + Security, 2017, 10178: 1-12.
    [20] LI Shaoyi, ZHANG Kai, YIN Jianfei, et al. Study on IR target recognition approach in aerial jamming environment based on bayesian probabilistic model[J]. IEEE Access, 2019, 7: 50300-50316. doi:  10.1109/ACCESS.2019.2910659
    [21] SHI Chen. Research on target recognition for anti-jamming towards infrared decoys[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
    [22] Martin Weiss. Adjoint method for missile performance analysis on state space models[J]. Journal of Guidance, Control and Dynamics, 2005, 28(2): 236-248. doi:  10.2514/1.7342
    [23] Martin Weiss, Domenic Bucco. Adjoint method for hybrid guidance loop state-space models[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(4): 614-622. doi:  10.2514/1.62954
    [24] Martin Weiss, Domenic Bucco. Evaluation method for dual phase guided weapons based on the adjoint method[C]//Proc. AIAA Guidance, Navigation and Control Conference and Exhibit, 2007: 1-12.
    [25] LI Quancheng, FAN Yonghua, WAN Shizheng, et al. Influence of the seeker blind range guidance policy on guidance precision[C]//Proc. IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), 2019: 1120-1124.
    [26] Vitaly Shalumov, Tal Shima. Weapon–target-allocation strategies in multiagent target–missile–defender engagement[J]. Journal of Guidance, Control and Dynamics, 2017, 40(10): 2452-2464. doi:  10.2514/1.G002598
    [27] Domenic Bucco and Martin Weiss. Blind range influence on guidance loop performance: an adjoint-based analysis[C]//Proc. AIAA Guidance, Navigation, and Control Conference, 2013: 1-16.
    [28] WANG Weiqiang, JIA Xiaohong, FU Kuisheng, et al. Guidance precision analysis based on airborne IRCM stochastic process[J]. Infrared Technology, 2019, 41(2): 163-170. http://en.cnki.com.cn/Article_en/CJFDTotal-HWJS201902010.htm
    [29] Arthur Vermeulen, Gerrit Maes. Missile avoidance maneuvres with simultaneous decoy deployment[C]//Proc. AIAA Guidance, Navigation, and Control Conference, 2009: 1-17.
    [30] HUANG Hesong, TONG Zhongxiang, LI Taorui, et al. Defense strategy of aircraft confronted with IR guided missile[J]. Mathematical Problems in Engineering, 2017, 2017: 1-9. http://d.wanfangdata.com.cn/periodical/c1c92ce628da29b08dfa35b2d46ccd19
    [31] Hecht C. Homing guidance using angular acceleration of the line of sight[C]//Proc. Navigation & Control Conference, 1991: 856-869.
    [32] Satadal Ghosh, Debasish Ghose, Soumyendu Raha. Unified time-to-go algorithms for proportional navigation class of guidance[J]. Journal of Guidance, Control and Dynamics, 2016, 39(6): 1188-1205. doi:  10.2514/1.G001472
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  759
  • HTML全文浏览量:  53
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-02
  • 修回日期:  2021-09-23
  • 刊出日期:  2022-03-20

目录

    /

    返回文章
    返回