留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MSPCNN与FCM的红外与可见光图像融合

邸敬 王国栋 马帅 廉敬

邸敬, 王国栋, 马帅, 廉敬. 基于MSPCNN与FCM的红外与可见光图像融合[J]. 红外技术, 2023, 45(1): 69-76.
引用本文: 邸敬, 王国栋, 马帅, 廉敬. 基于MSPCNN与FCM的红外与可见光图像融合[J]. 红外技术, 2023, 45(1): 69-76.
DI Jing, WANG Guodong, MA Shuai, LIAN Jing. Infrared and Visible Image Fusion Based on MSPCNN and FCM[J]. Infrared Technology , 2023, 45(1): 69-76.
Citation: DI Jing, WANG Guodong, MA Shuai, LIAN Jing. Infrared and Visible Image Fusion Based on MSPCNN and FCM[J]. Infrared Technology , 2023, 45(1): 69-76.

基于MSPCNN与FCM的红外与可见光图像融合

基金项目: 

甘肃省科技技术资助 22JR5RA360

国家自然科学基金 62061023

国家自然科学基金 61941109

甘肃省高等学校创新能力提升项目 2019B-052

甘肃省杰出青年基金 21JR7RA345

详细信息
    作者简介:

    邸敬(1979-),女,甘肃兰州人,硕士,副教授,硕士生导师,主要从事图像检测识别、信号处理技术和宽带无线通信方面的研究。E-mail: 46891771@qq.com

  • 中图分类号: TP391.9

Infrared and Visible Image Fusion Based on MSPCNN and FCM

  • 摘要: 针对红外和可见光图像融合存在的轮廓信息不全、边缘及纹理细节信息缺失等问题,提出一种改进简化脉冲耦合神经网络(Improved Simplified Pulse Coupled Neural Network, MSPCNN)和模糊C-均值(Fuzzy C-mean, FCM)图像融合算法。首先,将红外和可见光图像用非下采样剪切波算法(Non-Subsampled Shearlet Transform,NSST)分解为高低频子带;然后对分解后的高频子带采用MSPCNN融合,用一种高斯分布权重矩阵进行处理,增强细节信息和对比度;接着,将得到的低频子带图像使用FCM聚类算法进行聚类中心提取,设置聚类中心近似阈值简化过程,实现背景分类提取;最后利NSST进行逆变换,从而完成红外和可见光的图像融合过程。通过客观评价指标计算,本文所提方法在平均梯度、标准差、平均相似度等参考指标上相对于其他同类型算法均有改善提高,由于模型参数的简化,算法运行速度相对于其他算法得到提升,算法更适用于复杂场景。
  • 图  1  NSST变换分解过程

    Figure  1.  NSST transform decomposition process

    图  2  MSPCNN模型

    Figure  2.  Model diagram of MSPCNN

    图  3  MSPCNN与FCM结合的图像融合模型

    Figure  3.  Image fusion model based on MSPCNN and FCM

    图  4  不同算法在6种不同场景下的融合图像

    Figure  4.  Fusion images of different algorithms in six different scenes

    表  1  不同方法的客观评价指标均值

    Table  1.   Objective evaluation index mean value of different methods

    Image Algorithm AVG SSIM QAB/F PSN SF FD
    First PCA 3.4672 0.7171 0.4166 19.5587 8.1563 4.2357
    NSCT-PCNN 2.6693 0.7345 0.3013 22.4713 5.8531 3.0063
    NSST-PCNN 3.3602 0.7281 0.4503 19.5606 8.0915 4.0816
    PCNN-IFS 3.3544 0.3994 0.5144 12.3504 8.0694 4.0632
    NSST-FCM 4.8366 0.7226 0.4541 18.9521 12.6139 6.0441
    NSST-PA-PCNN 4.3941 0.7196 0.4776 19.0621 11.0428 5.1949
    Proposed algorithm 4.9783 0.7357 0.4673 19.5632 11.9764 5.8945
    Second PCA 2.2481 0.6639 0.4406 12.7854 5.3698 2.7438
    NSCT-PCNN 1.7512 0.6406 0.3292 18.6211 3.9054 1.9935
    NSST-PCNN 2.4183 0.6599 0.4638 12.7745 5.8367 2.9133
    PCNN-IFS 2.4097 0.4415 0.5566 11.9401 5.8081 2.8891
    NSST-FCM 3.2193 0.6478 0.4973 14.7370 8.1806 4.3017
    NSST-PA-PCNN 2.6837 0.6437 0.4906 12.6591 6.6781 3.2303
    Proposed algorithm 3.3542 0.6546 0.5156 13.6431 8.3459 3.9543
    Third PCA 3.1381 0.522 0.2667 16.6712 12.5317 5.5287
    NSCT-PCNN 2.1691 0.5998 0.3712 18.7813 6.0813 2.4056
    NSST-PCNN 2.6825 0.6185 0.4206 16.8078 9.7897 3.8225
    PCNN-IFS 2.6759 0.4484 0.4881 16.7297 9.7805 3.8034
    NSST-FCM 3.6972 0.6182 0.6442 17.2496 13.2931 4.6566
    NSST-PA-PCNN 3.2976 0.6164 0.5943 16.4798 11.6122 4.0373
    Proposed algorithm 3.6932 0.6245 0.6358 18.9682 12.3589 4.3589
    Fourth PCA 2.7559 0.7871 0.5614 16.8755 7.7808 3.3122
    NSCT-PCNN 1.5552 0.763 0.2586 16.9802 4.4557 1.8387
    NSST-PCNN 2.7275 0.7872 0.6003 16.8603 9.1856 3.5813
    PCNN-IFS 2.7188 0.4403 0.6549 12.5775 9.1723 3.5592
    NSST-FCM 3.1382 0.7685 0.5462 17.0442 10.7773 4.0853
    NSST-PA-PCNN 2.9165 0.7659 0.5529 16.7003 9.8139 3.6201
    Proposed algorithm 3.3584 0.7756 0.5641 17.1298 9.9821 4.1269
    Fifth PCA 4.9907 0.6288 0.4748 19.5355 9.9664 6.0269
    NSCT-PCNN 3.0046 0.6506 0.2351 21.5392 5.9493 3.5833
    NSST-PCNN 4.9841 0.6214 0.4186 19.4975 10.9044 6.5557
    PCNN-IFS 4.9805 0.3504 0.4423 11.1055 10.8874 6.5449
    NSST-FCM 6.2671 0.6559 0.4191 19.1803 13.5097 7.9851
    NSST-PA-PCNN 5.3543 0.6463 0.4451 19.2727 11.4391 6.6561
    Proposed algorithm 6.1596 0.7521 0.4563 19.6581 12.6985 6.7539
    Sixth PCA 3.9552 0.5015 0.5236 19.7263 10.9258 4.1901
    NSCT-PCNN 2.8944 0.4914 0.3599 21.4056 9.4389 2.9698
    NSST-PCNN 3.5472 0.5064 0.5285 19.7583 10.5539 3.7219
    PCNN-IFS 3.5657 0.4371 0.6022 16.0777 10.5725 3.7328
    NSST-FCM 5.2416 0.5077 0.6883 18.5657 14.9875 5.5393
    NSST-PA-PCNN 4.7394 0.5021 0.6371 19.0715 14.2598 4.9865
    Proposed algorithm 5.3684 0.5129 0.6752 20.5691 13.5214 5.6321
    下载: 导出CSV

    表  2  不同算法在6种不同场景下的融合时间

    Table  2.   The fusion time of different algorithms in six different scenarios  s

    Algorithm Scenes of fusion image
    First Second Third Fourth Fifth Sixth
    PCA 4.603 1.515 4.744 3.646 2.564 2.464
    NSCT-PCNN 10.423 5.305 4.459 4.482 4.417 4.667
    NSST-PCNN 4.319 2.851 2.917 2.902 3.819 2.301
    PCNN-IFS 5.429 1.226 3.194 2.631 2.197 2.903
    NSST-FCM 6.061 4.102 5.269 3.462 4.556 4.321
    NSST-PA-PCNN 3.589 3.452 3.454 4.839 3.543 3.455
    Proposed Algorithm 4.063 2.091 2.658 2.286 2.981 2.2136
    下载: 导出CSV
  • [1] WANG Z G, WEI W, SU B. Multi-sensor Image fusion algorithm based on multiresolution analysis[J]. International Journal of Online Engineering, 2018, 14(6): 44. doi:  10.3991/ijoe.v14i06.8697
    [2] SHEN Yu, CHEN Xiaopeng, YUAN Yubin, et al. Infrared and visible image fusion based on significant matrix and neural network[J]. Laser & Optoelectronics Progress, 2020, 57(20): 56.
    [3] González José R, Damião Charbel, Moran Maira, et al. A computational study on the role of parameters for identification of thyroid nodules by infrared images (and comparison with real data) [J]. Sensors, 2021, 21(13): 4459. doi:  10.3390/s21134459
    [4] XING Xiaoxue, LIU Cheng, LUO Cong, et al. Infrared and visible image fusion based on nonlinear enhancement and NSST decomposition[J]. EURASIP Journal on Wireless Communications and Networking, 2020(1): 125.
    [5] ZHANG Kang, HUANG Yongdong, YUAN Xia, et al. Infrared and visible image fusion based on intuitionistic fuzzy sets[J]. Infrared Physics and Technology, 2020(4): 85.
    [6] LIU Zhanwen, FENG Yan, CHEN Hang, et al. A fusion algorithm for infrared and visible based on guided filtering and phase congruency in NSST domain[J]. Optics and Lasers in Engineering, 2017, 97(6): 23.
    [7] 王丽丽, 刘辉, 郭肇禄. 图像融合在域内的算法研究进展[J]. 计算机技术与发展, 2021, 31(11): 8-14. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ202111002.htm

    WANG Lili, LIU Hui, GUO Zhaolu. Research progress of image fusion algorithm in domain [J]. Computer Technology and Development, 2021, 31(11): 8-14. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ202111002.htm
    [8] 徐慧娴, 黄坤超, 陈明举, 等. 基于深层次多分类生成对抗网络的红外与可见光图像融合方法[J/OL]. 电子测量技术, 2022, 3: 1-10.

    XU Huixian, HUANG Kunchao, CHEN Mingju, et al. Infrared and visible image fusion method based on deep multi classification to generate countermeasure network [J/OL]. Electronic Measurement Technology, 2022, 3: 1-10
    [9] 许丽娜, 周丹丹, 高翾, 等. 一种结合GIHS、NSST和PCA的全色多光谱影像融合方法[J/OL]. 武汉大学学报: 信息科学版, 2022, 3: 1-17.

    XU Lina, ZHOU Dandan, GAO Zhen, et al. A panchromatic multispectral image fusion method combining GHIS, NSST and PCA [J/OL]. Journal of Wuhan University: Information Science Edition, 2022, 3: 1-17.
    [10] 李向阳, 曹宇彤, 陈笑, 等. 基于自适应NSST-PCNN的红外与可见光图像融合方法研究[J]. 长春理工大学学报: 自然科学版, 2021, 44(5): 12-18. doi:  10.3969/j.issn.1672-9870.2021.05.003

    LI Xiangyang, CAO Yutong, CHEN Xiao, et al. Research on infrared and visible image fusion method based on adaptive nsst-pcnn [J]. Journal of Changchun University of Technology: Natural Science Edition, 2021, 44(5): 12-18. doi:  10.3969/j.issn.1672-9870.2021.05.003
    [11] SHEN Yu, YUAN Yubin, PENG Jing. Research on near infrared and color visible fusion based on PCNN in transform domain[J]. Spectroscopy and Spectral Analysis, 2021, 41(7): 65.
    [12] 刘帅, 王磊, 郝永平, 等. 基于NSCT与改进PCNN的红外与可见光图像融合方法研究[J]. 光电技术应用, 2021, 36(4): 60-65. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYG202104017.htm

    LIU Shuai, WANG Lei, HAO Yongping, et al. Research on infrared and visible image fusion method based on NSCT and improved PCNN [J]. Optoelectronic Technology Application, 2021, 36(4): 60-65. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYG202104017.htm
    [13] 戴文战, 王琪. 基于PCNN与IFS的可见光与红外图像融合方法[J]. 光电子·激光, 2020, 31(7): 738-744. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ202007012.htm

    DAI Wenzhan, WANG Qi. Visible and infrared image fusion method based on PCNN and IFS [J]. Optoelectronics and Laser, 2020, 31(7): 738-744. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ202007012.htm
    [14] WU Chenwen, MA Ning, JIANG Yufan. Weighted FCM clustering algorithm based on jeffrey divergence similarity measure[J]. Laser & Optoelectronics Progress, 2021, 58(8): 67
    [15] 巩稼民, 刘爱萍, 张晨, 等. 基于FCM与ADSCM的红外与可见光图像融合[J]. 激光与光电子学进展, 2020, 57(20): 222-230. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202020025.htm

    GONG Jiamin, LIU Aiping, ZHANG Chen, et al. Infrared and visible image fusion based on FCM and adscm[J]. Progress in Laser and Optoelectronics, 2020, 57(20): 222-230. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202020025.htm
    [16] ZHANG Hongna, YAN Wei, ZHANG Chunyou, et al. Research on image fusion algorithm based on NSST frequency division and improved LSCN[J]. Mobile Networks and Applications, 2021, 26(5): 53.
    [17] GUO K, Labate D. Optimally sparse multidimensional representation using shearlets[J]. SIAM Journal on Mathematical Analysis, 2007, 39(1): 298-318.
    [18] Easley G, Labate D, LIM W Q. Sparse directional image representation using discrete shearlet transform[J]. Applied and Computation Harmonic Analysis, 2008, 25(1): 25-46.
    [19] YAN Peizhou, ZOU Jiancheng, LI Zhengzheng, et al. Infrared and visible image fusion based on NSST and RDN[J]. Intelligent Automation & Soft Computing, 2021, 28(1): 35. http://www.xueshufan.com/publication/3147917438
    [20] TAN Wei, ZHANG Jiajia, XIANG Pei, et al. Infrared and visible image fusion via NSST and PCNN in multiscale morphological gradient domain[J]. Optics, Photonics And Digital Technologies For Imaging Applications Ⅵ, 2021, 11353: 54.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  133
  • HTML全文浏览量:  32
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-29
  • 修回日期:  2023-01-12
  • 刊出日期:  2023-01-20

目录

    /

    返回文章
    返回