留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于NSST-DWT-ICSAPCNN的多模态图像融合算法

王晓娜 潘晴 田妮莉

王晓娜, 潘晴, 田妮莉. 基于NSST-DWT-ICSAPCNN的多模态图像融合算法[J]. 红外技术, 2022, 44(5): 497-503.
引用本文: 王晓娜, 潘晴, 田妮莉. 基于NSST-DWT-ICSAPCNN的多模态图像融合算法[J]. 红外技术, 2022, 44(5): 497-503.
WANG Xiaona, PAN Qing, TIAN Nili. Multi-modality Image Fusion Algorithm Based on NSST-DWT-ICSAPCNN[J]. Infrared Technology , 2022, 44(5): 497-503.
Citation: WANG Xiaona, PAN Qing, TIAN Nili. Multi-modality Image Fusion Algorithm Based on NSST-DWT-ICSAPCNN[J]. Infrared Technology , 2022, 44(5): 497-503.

基于NSST-DWT-ICSAPCNN的多模态图像融合算法

基金项目: 

国家自然科学基金项目 61901123

详细信息
    作者简介:

    王晓娜(1997-),女,硕士研究生,主要研究方向为图像处理、模式识别。E-mail:717057123@qq.com

    通讯作者:

    潘晴(1975-),男,副教授,主要研究方向为图像处理、信号处理、模式识别等。E-mail:pangqing@gdut.edu.cn

  • 中图分类号: TP391

Multi-modality Image Fusion Algorithm Based on NSST-DWT-ICSAPCNN

  • 摘要: 为了增加融合图像的信息量,结合非下采样剪切波变换(Non-Subsampled Shearlet Transform, NSST)和离散小波变换(Discrete Wavelet Transform, DWT)的互补优势,提出了改进的多模态图像融合方法。采用NSST对两幅源图像进行多尺度、多方向的分解,得到相应的高频子带和低频子带;利用DWT将低频子带进一步分解为低频能量子带和低频细节子带,并利用最大值选择规则融合能量子带;采用改进连接强度的自适应脉冲耦合神经网络(Improved Connection Strength Adaptive Pulse Coupled Neural Network, ICSAPCNN)分别融合细节子带和高频子带,并对能量子带和细节子带进行DWT逆变换,得到融合的低频子带;采用NSST逆变换重构出细节信息丰富的融合图像。实验证明,提出的算法在主观视觉和客观评价方面均优于其他几种算法,且能同时适用于红外与可见光源图像、医学源图像的融合。
  • 图  1  NSST二级分解过程

    Figure  1.  The two-level decomposition process of NSST

    图  2  DWT分解过程

    Figure  2.  The decomposition process of DWT

    图  3  基于NSST-DWT-ICSAPCNN的融合流程图

    Figure  3.  The fusion diagram based on NSST-DWT-ICSAPCNN

    图  4  “road”红外和可见光图像以及融合结果

    Figure  4.  The "road" infrared and visible source images and fusion results

    图  5  “tree”红外和可见光图像以及融合结果

    Figure  5.  The "tree" infrared and visible source images and fusion results

    图  6  致死性脑卒中CT和MRI图像以及融合结果

    Figure  6.  The fatal stroke CT and MRI source images and fusion results

    图  7  脑膜瘤CT和MRI图像以及融合结果

    Figure  7.  The meningoma CT and MRI source images and fusion results

    表  1  两组红外与可见光图像客观评估指标值

    Table  1.   Values of objective evaluation index for 2 groups of infrared and visible images

    Images Metrics ASR[7] CNN[8] NSCT-APCNN[9] NSST-APCNN[10] NSST-DWT-ICSAPCNN
    Road QEN 7.1339 7.4964 7.3703 7.331 7.4247
    QMI 3.0046 3.2051 3.0786 3.2336 3.0167
    QSD 38.3922 48.4964 45.5887 44.5039 51.7009
    QVIFF 0.4469 0.5842 0.5206 0.5078 0.6275
    QIE 0.8055 0.8054 0.8052 0.8053 0.8062
    QTE 0.5749 0.5207 0.5401 0.5454 0.5886
    Tree QEN 6.3464 7.1022 6.9596 6.9152 7.1043
    QMI 1.2234 1.1755 1.3188 1.7535 2.1287
    QSD 24.3398 37.2648 32.8565 31.4357 34.8227
    QVIFF 0.3177 0.4706 0.3822 0.3798 0.4261
    QIE 0.8033 0.8043 0.8035 0.8035 0.8040
    QTE 0.4090 0.2861 0.2981 0.3279 0.3282
    下载: 导出CSV

    表  2  六组红外与可见光图像客观评估指标平均值

    Table  2.   Average values of objective evaluation index for 6 groups of infrared and visible images

    Metrics ASR[7] CNN[8] NSCT-APCNN[9] NSST-APCNN[10] NSST-DWT-ICSAPCNN
    QEN 6.2345 6.8978 6.9633 6.9094 7.0247
    QMI 2.8656 3.2917 3.6756 4.1826 4.3438
    QSD 24.7236 38.7514 37.0670 35.4332 38.6467
    QVIFF 0.3761 0.5399 0.5445 0.5032 0.5514
    QIE 0.8063 0.8076 0.8086 0.8090 0.8097
    QTE 0.7311 0.6582 0.6534 0.6971 0.6841
    下载: 导出CSV

    表  3  两组医学图像客观评估指标值

    Table  3.   Values of objective evaluation index for 2 groups of medical images

    Images Metrics ASR[7] CNN[8] NSCT-APCNN[9] NSST-APCNN[10] NSST-DWT-ICSAPCNN
    fatal stroke QEN 4.5440 4.8244 5.0632 4.8747 5.1693
    QMI 2.5170 2.8593 2.7118 2.8665 2.7618
    QSD 72.3351 90.2448 90.0339 84.2365 88.4652
    QVIFF 0.2691 0.3333 0.3259 0.3100 0.3131
    QIE 0.8051 0.8055 0.8054 0.8051 0.8054
    QTE 0.6663 0.7252 0.7277 0.7102 0.7896
    meningoma QEN 4.1794 4.2013 4.3485 4.6852 4.6013
    QMI 2.5408 2.9163 2.9516 3.0001 3.0665
    QSD 72.0789 88.7470 92.8914 90.2904 91.3901
    QVIFF 0.4940 0.6192 0.6279 0.5624 0.6292
    QIE 0.8056 0.8059 0.8062 0.8064 0.8064
    QTE 0.7907 0.7923 0.8445 0.8733 0.8804
    下载: 导出CSV

    表  4  八组医学图像客观评估指标平均值

    Table  4.   Average values of objective evaluation index for 8 groups of medical images

    Metrics ASR[7] CNN[8] NSCT-APCNN[9] NSST-APCNN[10] NSST-DWT-ICSAPCNN
    QEN 4.3242 4.6515 4.7943 4.7715 4.8254
    QMI 2.6843 2.9002 2.8697 2.8998 2.9848
    QSD 66.6290 83.3568 85.9244 85.7634 85.7755
    QVIFF 0.3561 0.4417 0.4562 0.4491 0.4647
    QIE 0.8057 0.8061 0.8061 0.8062 0.8062
    QTE 0.7033 0.7494 0.7608 0.7593 0.7818
    下载: 导出CSV
  • [1] YANG Y, QUE Y, HUANG S, et al. Multimodal sensor medical image fusion based on type-2 fuzzy logic in NSCT domain[J]. IEEE Sensors Journal, 2016, 16(10): 3735-3745. doi:  10.1109/JSEN.2016.2533864
    [2] LI G, LIN Y, QU X. An infrared and visible image fusion method based on multi-scale transformation and norm optimization[J]. Information Fusion, 2021, 71: 109-129. doi:  10.1016/j.inffus.2021.02.008
    [3] LI X, ZHOU F, TAN H. Joint image fusion and denoising via three-layer decomposition and sparse representation[J]. Knowledge-Based Systems, 2021, 224: 107087. doi:  10.1016/j.knosys.2021.107087
    [4] XU H, MA J. EMFusion: An unsupervised enhanced medical image fusion network[J]. Information Fusion, 2021, 76: 177-186. . doi:  10.1016/j.inffus.2021.06.001
    [5] Bulanon D M, Burks T F, Alchanatis V. Image fusion of visible and thermal images for fruit detection[J]. Biosystems Engineering, 2009, 103(1): 12-22. doi:  10.1016/j.biosystemseng.2009.02.009
    [6] ZHAN L, ZHUANG Y, HUANG L. Infrared and visible images fusion method based on discrete wavelet transform[J]. J. Comput. , 2017, 28(2): 57-71.
    [7] LIU Y, WANG Z. Simultaneous image fusion and denoising with adaptive sparse representation[J]. IET Image Processing, 2015, 9(5): 347-357. doi:  10.1049/iet-ipr.2014.0311
    [8] LIU Y, CHEN X, CHENG J, et al. Infrared and visible image fusion with convolutional neural networks[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2018, 16(3): 1850018. doi:  10.1142/S0219691318500182
    [9] ZHU Z, ZHENG M, QI G, et al. A phase congruency and local Laplacian energy based multi-modality medical image fusion method in NSCT domain[J]. IEEE Access, 2019, 7: 20811-20824. doi:  10.1109/ACCESS.2019.2898111
    [10] ZHANG L, ZENG G, WEI J, et al. Multi-modality image fusion in adaptive-parameters SPCNN based on inherent characteristics of image[J]. IEEE Sensors Journal, 2019, 20(20): 11820-11827.
    [11] 张蕾. 采用改进平均梯度与自适应PCNN的图像融合[J]. 计算机应用与软件, 2021, 38(3): 218-223. doi:  10.3969/j.issn.1000-386x.2021.03.033

    ZHANG Lei. Image fusion using improved average gradient and adaptive PCNN[J]. Computer Application and Software, 2021, 38(3): 218-223. doi:  10.3969/j.issn.1000-386x.2021.03.033
    [12] YIN M, LIU X, LIU Y, et al. Medical image fusion with parameter- adaptive pulse coupled neural network in nonsubsampled shearlet transform domain[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 68(1): 49-64.
    [13] Diwakar M, Singh P, Shankar A. Multi-modal medical image fusion framework using co-occurrence filter and local extrema in NSST domain[J]. Biomedical Signal Processing and Control, 2021, 68: 102788. doi:  10.1016/j.bspc.2021.102788
    [14] 邓辉, 王长龙, 胡永江, 等. 脉冲耦合神经网络在图像融合中的应用研究[J]. 电光与控制, 2019, 26(11): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201911006.htm

    DENG Hui, WANG Changlong, HU Yongjiang, et al. Application of pulse coupled neural network in image fusion[J]. Electronics Options & Contral, 2019, 26(11): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201911006.htm
    [15] 杨风暴, 董安冉, 张雷, 等. DWT、NSCT和改进PCA协同组合红外偏振图像融合[J]. 红外技术, 2017, 39(3): 201-208. http://hwjs.nvir.cn/article/id/hwjs201703001

    YANG Fengbao, DONG Aran, ZHANG Lei, et al. Infrared Polarization Image fusion using the synergistic combination of DWT, NSCT and improved PCA[J]. Infrared Technology, 2017, 39(3): 201-208. http://hwjs.nvir.cn/article/id/hwjs201703001
    [16] TAN W, Tiwari P, Pandey H M, et al. Multimodal medical image fusion algorithm in the era of big data[J]. Neural Computing and Applications, 2020: 1-21.
    [17] JIANG L, ZHANG D, CHE L. Texture analysis-based multi-focus image fusion using a modified Pulse-Coupled Neural Network (PCNN)[J]. Signal Processing: Image Communication, 2021, 91: 116068. doi:  10.1016/j.image.2020.116068
    [18] LIU Z, Blasch E, XUE Z, et al. Objective assessment of multiresolution image fusion algorithms for context enhancement in night vision: a comparative study[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 34(1): 94-109.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  184
  • HTML全文浏览量:  73
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-02
  • 修回日期:  2021-11-24
  • 刊出日期:  2022-05-20

目录

    /

    返回文章
    返回