留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

短波红外成像系统设计及应用的研究进展

张艺 胡健钏 朱尤攀 孙爱平 陈洁

张艺, 胡健钏, 朱尤攀, 孙爱平, 陈洁. 短波红外成像系统设计及应用的研究进展[J]. 红外技术, 2024, 46(3): 246-255.
引用本文: 张艺, 胡健钏, 朱尤攀, 孙爱平, 陈洁. 短波红外成像系统设计及应用的研究进展[J]. 红外技术, 2024, 46(3): 246-255.
ZHANG Yi, HU Jianchuan, ZHU Youpan, SUN Aiping, CHEN Jie. Research Progress in the Design and Application of Shortwave Infrared Imaging Systems[J]. Infrared Technology , 2024, 46(3): 246-255.
Citation: ZHANG Yi, HU Jianchuan, ZHU Youpan, SUN Aiping, CHEN Jie. Research Progress in the Design and Application of Shortwave Infrared Imaging Systems[J]. Infrared Technology , 2024, 46(3): 246-255.

短波红外成像系统设计及应用的研究进展

详细信息
    作者简介:

    张艺(2000-),女,硕士研究生,研究方向:光学系统设计。E-mail:1648414768@qq.com

    通讯作者:

    胡健钏(1991-),男,硕士,工程师,研究方向:红外整机系统设计及软件设计。E-mail:hjc200930@sina.com

  • 中图分类号: TN215

Research Progress in the Design and Application of Shortwave Infrared Imaging Systems

  • 摘要: 短波红外光学成像是目前国际上研究热点之一,通过接收短波红外辐射进行探测和成像,可得到更多目标物体的信息,弥补了可见光成像的不足,从而实现全波段成像。本文从短波红外光学成像的光学特性、成像原理和光学系统结构设计出发,比较了短波红外与可见光和中长波红外成像的优缺点,并简单介绍了短波红外成像系统中铟镓砷探测器的特点和国内外发展现状,以及介绍了短波红外成像在不同领域的应用情况,最后,对短波红外成像未来的发展进行了展望。
  • 图  1  短波红外波段大气透过率

    Figure  1.  Short-wave infrared band atmospheric transmittance

    图  2  月光与大气辉光光辐射亮度曲线图

    Figure  2.  Luminance curves of moonlight and atmospheric glow

    图  3  折射式结构图示例

    Figure  3.  Example refraction structure diagram

    图  4  夜间可见光成像(左)和短波红外成像(右)

    Figure  4.  Night visible light imaging (left) and short-wave infrared imaging (right)

    图  5  可见光(左)和短波红外(右)伪装识别图像对比

    Figure  5.  Comparison of visible light (left) and short-wave infrared (right) camouflage recognition images

    图  6  可见光、短波红外、中波红外、长波红外成像效果对比

    Figure  6.  Comparison of visible light, short-wave infrared, medium-wave infrared and long-wave infrared imaging effect

    图  7  不同截止频率InGaAs探测器光谱响应(左)及量子效率(右)

    Figure  7.  Spectral responsivity (left) and quantum efficiency (right) of InGaAs detectors with different cutoff frequencies

    图  8  上海技术物理研究所InGaAs探测器组件发展史

    Figure  8.  History of InGaAs detector assembly at Shanghai Institute of Technical Physics

    图  9  雪夜对3.6 km处防火塔进行辅助照明成像

    Figure  9.  Auxiliary lighting imaging was performed on the fire tower at 3.6 km on snowy night

    图  10  神舟三号光谱仪整机结构和在轨影像图

    Figure  10.  Overall structure and in-orbit image of Shenzhou 3 spectrometer

    图  11  硅半导体的边缘成像

    Figure  11.  Edge imaging of silicon semiconductors

    图  12  短波红外在农产品检测领域的应用

    Figure  12.  Application of short-wave infrared in the field of agricultural product detection

    图  13  可见光(左)和短波红外(右)透烟成像

    Figure  13.  Visible light (left) and short-wave infrared (right) through smoke imaging

    表  1  不同材料折射率与透射范围

    Table  1.   Refractive index and transmission range of different materials

    Material Refractive index Abbe number Coefficient of thermal expansion(×10-6 Transmission band/μm
    MgF2 1.3777 106.22 9.4 0.2~7
    CaF2 1.4338 94.996 18.9 0.23~9.7
    BaF2 1.4655 81.608 18.4 0.23~10.3
    ZnS 2.3672 15.305 6.6 0.42~18
    F-SILICA 1.4585 67.821 0.51 0.21~3.71
    H-K9L 1.5032 64.2 76 0.29~2.4
    H-FK61B 1.4875 81.605 127 0.302~2.325
    H-FK95N 1.4378 94.523 144 0.302~2.325
    H-QF14 1.5955 39.22 78 0.36~2.4
    下载: 导出CSV

    表  2  国外代表性InGaAs探测器厂家及器件性能

    Table  2.   Foreign representative InGaAs detector manufacturers and device performance

    Country Manufacturer Array specifications and pixel dimensions Response wavelength /μm Quantum efficiency QE%
    America SUI 1280×1024/12 μm 0.9(0.7)-1.7 μm ≥ 65% from 0.9 μm to 1.6 μm
    Japan HORIBA 1024×1
    25 μm×500 μm
    0.8-1.7μm <80% from 1 μm to 1.6 μm
    Britain Raptorphotonics 1280×1024/10μm 0.4 - 1.7μm Peak<85%(<73% @1.064μm, <80% @1.55μm)
    Germany Allied Vision echnologies 640×512/15 μm 0.9 μm to 1.7 μm >75%
    France Sofradir 640×512/15 μm 0.9(0.4)~1.7 μm <70% from 1 μm to 1.6 μm
    下载: 导出CSV

    表  3  国内主要InGaAs科研生产单位情况

    Table  3.   Major domestic InGaAs research and production units

    Unit Characteristics Representative product Application direction
    Shanghai Institute of Technical Physics Professional infrared detector development unit, with the technical capability of spectral extension (-2.4 μm) Area array detector:
    640×512@25 μm
    1280×1024@15 μm
    Aerospace application
    Chongqing photoelectric Technology Research Institute(CLP 44 Institute) Has a more mature unit detector and InGaAs - APD avalanche detector products Units &APD devices:
    320×256@30 μm
    640×512@15 μm
    Photoelectric communication
    Kunming Institute of Physics Professional infrared detector development unit, took the lead in the development of digital, wide spectrum InGaAs detector, with strong scientific research, production and application promotion capabilities Area array detector:
    640×512/15 μm,
    1280×1024/10 μm
    Line detector:
    1024×2/12.5 μm、512×2/25 μm
    Aerospace and civil fields
    Shanxi Guohui optoelectronic technology Co., LTD Preparation of high performance focal plane detector, movement design and application Area array detector:
    320×256@30 μm
    640×512@15-25 μm
    Civil domain
    Xi 'an Liding Optoelectronic Technology Co., LTD Movement development Area array detector:
    320×256@30 μm
    640×512@15-25 μm
    Civil domain
    Beijing Lingyun Light Technology Group With industrial detection sorting, spectrum analysis system development and application capabilities 640×512@15 μm
    1024×2@12.5 μm
    System development applications, such as spectrometers
    下载: 导出CSV
  • [1] 熊文同. 基于铟镓砷探测器的双波段光学系统设计[D]. 西安: 西安工业大学, 2022.

    XIONG Wentong. Design of Dual-Band Optical System Based on Indium Gallium Arsenide Detector[D]. Xi'an: Xi'an Technological University, 2022.
    [2] 张瑞. InGaAs短波红外低照度成像技术研究及其应用[D]. 上海: 中国科学院大学(中国科学院上海技术物理研究所), 2021.

    ZHANG Rui. Research and Application of InGaAs Short-Wave Infrared Low-Illumination Imaging Technology[D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Technical Physics, Chinese Academy of Sciences), 2021.
    [3] 王伟. 多波段短波红外相机光学系统设计与成像质量评估[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2020.

    WANG Wei. Optical System Design and Imaging Quality Evaluation of Multi-Band Short-Wave Infrared Camera[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2020.
    [4] 李建伟. 双波段短波红外InGaAs线列探测器成像技术研究[D]. 上海: 中国科学院研究生院(中国科学院上海技术物理研究所), 2016.

    LI Jianwei. Research on Imaging Technology of Dual-Band Short-Wave Infrared InGaAs Linear Detector[D]. Shanghai: Graduate School of Chinese Academy of Sciences (Shanghai Institute of Technical Physics, Chinese Academy of Sciences), 2016.
    [5] 王振东. 宽波段成像光学系统设计[D]. 西安: 西安工业大学, 2022.

    WANG Zhendong. Design of Wide-band Imaging Optical System[D]. Xi'an: Xi 'an Technological University, 2022.
    [6] 曲锐, 邓键, 彭晓乐, 等. 0.4~1.7 μm宽波段大相对孔径光学系统设计[J]. 光学学报, 2015, 35(8): 302-307. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201508041.htm

    QU Rui, DENG Jian, PENG Xiaole, et al. Design of optical system with wide band and large relative aperture from 0.4-1.7 μm[J]. Acta Optica Sinica, 2015, 35(8): 302-307. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201508041.htm
    [7] 杨小儒, 张良, 王希军, 等. 一种高分辨率短波红外宽温度范围被动消热差光学系统[J]. 激光与光电子学进展, 2012, 49(1): 129-132. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201201020.htm

    YANG Xiaoru, ZHANG Liang, WANG Xijun, et al. A high resolution short-wave infrared passive thermal suppression optical system with wide temperature range[J]. Laser and Optoelectronics Progress, 2012, 49(1): 129-132. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201201020.htm
    [8] 郭永洪, 沈忙作, 陆祖康. 离轴三反射镜系统研究[J]. 光电工程, 1999, 26(3): 45-48. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC1999S1008.htm

    GUO Yonghong, SHEN Mangzuo, LU Zukang. Research on off-axis three-mirror system[J]. Opto-electronic Engineering, 1999, 26(3): 45-48. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC1999S1008.htm
    [9] 雷亚贵, 王戎瑞, 陈苗海. 国外非制冷红外焦平面阵列探测器进展[J]. 激光与红外, 2007(9): 801-805. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW200709002.htm

    LEI Yagui, WANG Rongrui, CHEN Miaohai. Progress of uncooled infrared focal plane array detectors abroad[J]. Laser & Infrared, 2007(9): 801-805. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW200709002.htm
    [10] 张卫锋, 张若岚, 赵鲁生, 等. InGaAs短波红外探测器研究进展[J]. 红外技术, 2012, 34(6): 361-365. doi:  10.3969/j.issn.1001-8891.2012.06.011

    ZHANG Weifeng, ZHANG Ruolan, ZHAO Lusheng, et al. Research progress of InGaAs short-wave infrared detector [J]. Infrared Technology, 2012, 34(6): 361-365. doi:  10.3969/j.issn.1001-8891.2012.06.011
    [11] 马旭, 李云雪, 黄润宇, 等. 短波红外探测器的发展与应用(特邀)[J]. 红外与激光工程, 2022, 51(1): 135-146. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202201010.htm

    MA Xu, LI Yunxue, HUANG Runyu, et al. Development and application of short-wave infrared detector [J]. Infrared and Laser Engineering, 2022, 51(1): 135-146. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202201010.htm
    [12] 费宬. 基于国产InGaAs焦平面探测器的短波红外成像关键技术研究[D]. 济南: 山东大学, 2020.

    FEI Cheng. Research on Key Technologies of Short-wave Infrared Imaging Based on Domestic InGaAs Focal Plane Detector[D]. Jinan: Shandong University, 2020.
    [13] 周建, 周易, 倪歆玥, 等. 偏振集成红外光电探测器研究进展与应用[J]. 光电工程, 2023, 50(5): 67-84. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202305004.htm

    ZHOU Jian, ZHOU Yi, NI Xinyue, et al. Research progress and application of polarization integrated infrared photodetector[J]. Opto-electronic Engineering, 2023, 50(5): 67-84. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202305004.htm
    [14] FEI Cheng, LI Yongfu, CHEN Darning, et al. Applications of InGaAs near-infrared linear scanning camera in solar cell inspection[C]//Proceedings of SPIE, Optical Sensing and Imaging Technologies and Applications, 2018, 10846: 1084613.
    [15] Ali Can Karaca, Alp Erturk, M Kemal Gullu, et al. Plastic waste sorting using infrared hyperspectral imaging system[C]//Proceedings of IEEE, 21st Signal Processing and Communications Applications Conference (SIU), 2013: 6531170.
    [16] Wilson R H, Nadeau K P, Jaworski F B, et al. Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization[J]. J Biomed Opt, 2015, 20(3): 030901. doi:  10.1117/1.JBO.20.3.030901
    [17] 杨爱粉. 短波红外激光在光电侦察与反侦察中的应用[J]. 应用光学, 2019, 40(6): 937-943. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201906004.htm

    YANG Aifen. Application of short-wave infrared laser in photoelectric reconnaissance and anti-reconnaissance[J]. Journal of Applied Optics, 2019, 40(6): 937-943. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201906004.htm
    [18] 徐苇. 红外技术在食品工业中的应用[J]. 中国食品添加剂, 2005(1): 86-89. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSTJ20050100K.htm

    XU Wei. Application of infrared technology in food industry [J]. Chinese Food Additives, 2005(1): 86-89. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSTJ20050100K.htm
    [19] 赵爽. InGaAs短波红外640×512面阵视频成像系统设计[D]. 中国科学院大学(中国科学院上海技术物理研究所), 2017.

    ZHAO Shuang. Design of InGaAs Short-wave Infrared 640×512 Planar Array Video Imaging System[D]. Shanghai: Shanghai Institute of Technical Physics, University of Chinese Academy of Sciences, 2017.
    [20] 闫茹梦. 多波段红外光学成像系统的研究[D]. 西安: 西安工业大学, 2022.

    YAN Rumeng. Research on Multi-Band Infrared Optical Imaging System [D]. Xi 'an: Xi 'an Technological University, 2022.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  113
  • HTML全文浏览量:  40
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-30
  • 修回日期:  2023-08-25
  • 刊出日期:  2024-03-20

目录

    /

    返回文章
    返回