留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于统计窄谱带模型的油料火焰辐射光谱模拟

彭吴迪 刘礼喜 陈志莉 唐瑾 陈林 胡天佑 王皓文

彭吴迪, 刘礼喜, 陈志莉, 唐瑾, 陈林, 胡天佑, 王皓文. 基于统计窄谱带模型的油料火焰辐射光谱模拟[J]. 红外技术, 2022, 44(3): 217-224.
引用本文: 彭吴迪, 刘礼喜, 陈志莉, 唐瑾, 陈林, 胡天佑, 王皓文. 基于统计窄谱带模型的油料火焰辐射光谱模拟[J]. 红外技术, 2022, 44(3): 217-224.
PENG Wudi, LIU Lixi, CHEN Zhili, TANG Jin, CHEN Lin, HU Tianyou, WANG Haowen. Oil Fire Radiation Calculation Based on a Statistical Narrow-Band Model[J]. Infrared Technology , 2022, 44(3): 217-224.
Citation: PENG Wudi, LIU Lixi, CHEN Zhili, TANG Jin, CHEN Lin, HU Tianyou, WANG Haowen. Oil Fire Radiation Calculation Based on a Statistical Narrow-Band Model[J]. Infrared Technology , 2022, 44(3): 217-224.

基于统计窄谱带模型的油料火焰辐射光谱模拟

基金项目: 

国家自然科学基金 21976043

桂林理工大学科研启动基金 GUTQDJJ20172017075

详细信息
    作者简介:

    彭吴迪(1998-),男,硕士研究生,主要从事环境遥感监测方面的研究。E-mail:1981552937@qq.com

    通讯作者:

    陈志莉(1971-),女,教授,博士生导师,主要从事环境遥感监测方面的研究。E-mail:zhilichen518@foxmail.com

  • 中图分类号: O433

Oil Fire Radiation Calculation Based on a Statistical Narrow-Band Model

  • 摘要: 近年来油料火灾污染事故频发危害性极大,通过分析光谱特性来提取火灾信息已成为研究油料火灾事故的重要途径。目前国内外学者已建立了多种气体辐射和炭黑辐射的模型对燃料燃烧进行研究,但少有对火焰光谱进行建模深入分析燃烧污染产物光谱特征信息。本文搭建了油料火焰光谱测试平台,测量了单一尺度下酒精、92号汽油、95号汽油和0号柴油的火焰光谱,以及多尺度下0号柴油的火焰光谱。实验结果表明3种油料的火焰光谱相似,随着尺度的增大辐射亮度呈非线性增大。基于统计窄谱带法(statistical narrow band,SNB)构建了油料火焰光谱辐射模型,通过实验数据验证曲线拟合度达0.895。利用该光谱辐射模型计算出油料火焰大尺度下的平均辐射亮度与平均透过率、不同烟气浓度下的平均透过率,能为遥感探测火灾污染及反演污染物浓度提供帮助。
  • 图  1  油料火焰光谱测试平台

    Figure  1.  Oil flame spectrum testing platform

    图  2  柴油与酒精的火焰光谱对比

    Figure  2.  Flame spectral comparison of diesel and alcohol

    图  3  6 cm尺度下柴油、92号汽油、95号汽油火焰光谱对比

    Figure  3.  Flame spectral comparison of diesel oil, No. 92 gasoline and No. 95 gasoline at the scale of 6cm

    图  4  6 cm、14 cm、18 cm和22 cm四种尺度下柴油火焰光谱对比

    Figure  4.  Spectral comparison of diesel flame at 6 cm, 14 cm, 18 cm and 22 cm scales

    图  5  柴油火焰光谱实测值与SNB模拟值对比

    Figure  5.  Comparison of measured values of diesel flame spectrum with simulated values of SNB

    图  6  实验数据、逐线法模拟值、SNB模拟值对比

    Figure  6.  Comparison of experimental data, line by line simulation value and SNB simulation value

    图  7  SNB模拟不同燃烧尺度、不同烟气浓度下火焰平均透过率

    Figure  7.  SNB simulates average flame transmittance at different combustion scales and flue gas concentrations

    图  8  SNB模拟不同尺度下火焰光谱辐射亮度

    Figure  8.  SNB simulates flame spectral luminance at different scales

    表  1  92号汽油,95号汽油,0号柴油,酒精燃烧60 s时的组分体积分数与温度

    Table  1.   Volume fraction and temperature of gasoline 92, gasoline 95, diesel 0, alcohol in 60 s combustion

    Type 92#gasoline 95#gasoline 0#diesel Alcohol
    CO 0.0067% 0.0066% 0.0074% 0.0047%
    CO2 0.0821% 0.0892% 0.0854% 0.0823%
    T/K 1155 1165 1202 977
    下载: 导出CSV

    表  2  LBL, SNB和实验数据在2.5 μm, 2.7 μm, 4.3 μm, 5.5 μm,6.3 μm特征峰处辐射亮度比较

    Table  2.   LBL, SNB and experimental data were compared at characteristic peaks of 2.5, 2.7, 4.3, 5.5, 6.3 μm

    Spectral radiance/(W·cm-2·μm-1·sr-1) 2.5 μm 2.7 μm 4.3 μm 5.5 μm 6.3 μm
    LBL 0.1236 0.2358 0.2936 0.0261 0.0142
    SNB 0.1194 0.2245 0.2956 0.0381 0.0206
    Experiment 0.1466 0.1976 0.3001 0.0299 0.0178
    下载: 导出CSV

    表  3  SNB, LBL拟合评价指标分析

    Table  3.   Analysis of SNB and LBL fitting evaluation indexes

    Evaluation RMSE MAE R2
    LBL-experiment 0.0113 0.00769 0.9486
    SNB-experiment 0.0162 0.0109 0.8950
    SNB-LBL 0.0215 0.0129 0.7760
    下载: 导出CSV
  • [1] 周锋, 阮桢. 石油化工储罐火灾事故统计与分析[C]//2016中国消防协会科学技术年会论文集, 2016: 30-32.

    ZHOU Feng, RUAN Zhen. Statistics and analysis of fire accidents in petrochemical storage tanks[C]//Proceedings of 2016 China Fire Protection Association Science and Technology Annual Meeting, 2016: 30-32.
    [2] 刘洪涛, 陈志莉, 刘强, 等. 基于小波分解的油料火焰光谱特性分析研究[J]. 光学学报, 2016, 36(1): 320-326. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201601040.htm

    LIU Hongtao, CHEN Zhili, LIU Qiang, et al. Analysis of oil flame spectrum characteristics based on wavelet decomposition[J]. Acta Optica Sinica, 2016, 36(1): 320-326. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201601040.htm
    [3] Wakatsuki K, Fuss S P, Hamins A, et al. A technique for extrapolating absorption coefficient measurements to high temperatures[J]. Proceedings of the Combustion Institute, 2005, 30(1): 1565-1573. doi:  10.1016/j.proci.2004.08.078
    [4] RAJ P K. LNG pool fire spectral data and calculation of emission power[J]. Journal of Hazardous Materials, 2007, 140(3): 720-729.
    [5] RAJ P K. Large hydrocarbon fuel pool fires: Physical characteristics and thermal emission variations with height[J]. Journal of Hazardous Materials, 2007, 140(1): 280-292. https://www.sciencedirect.com/science/article/abs/pii/S0304389406009885
    [6] Maoult Y L, Sentenac T, Orteu J J, et al. Fire Detection: A New Approach Based on a Low Cost CCD Camera in the Near Infrared[J]. Process Safety and Environmental Protection, 2007, 85(3): 193-206. doi:  10.1205/psep06035
    [7] 徐建楠, 蒋新生, 张昌华, 等. 不同工况下汽油蒸气爆炸着火延迟与机理分析[J]. 化工学报, 2019, 70(1): 398-407. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201901045.htm

    XU Jiannan, JIANG Xinshen, ZHANG C H, et al. The ignition delay and mechanism analysis of gasoline vapor explosion under different working conditions[J]. CIESC Journal, 2019, 70(1): 398-407. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201901045.htm
    [8] Boudreau S, Levasseur S, Perilla C, et al. Chemical detection with hyperspectral lidar using dual frequency combs[J]. Optics Express, 2013, 21(6): 7411-8. doi:  10.1364/OE.21.007411
    [9] Klassen M S, Sutula J A, Holton M M, et al. Transmission throughand breakage of single and multi-pane glazing due to radiant exposure: state of research[J]. Fire Technology, 2010, 46(4): 821-832. doi:  10.1007/s10694-010-0150-4
    [10] Grosshandler W L. The effect of soot on pyrometric measurements of coal particle temperature[J]. Combustion & Flame, 1982, 55(1): 59-71. https://www.sciencedirect.com/science/article/pii/0010218084901494
    [11] Rothman L S, Gordon I E, Barber R J, et al. HITEMP, the high-temperature molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2010, 111(15): 2139-2150. https://www.sciencedirect.com/science/article/pii/S002240731000169X
    [12] Malkmus W. Random lorentz band model with exponential-tailed S-1 line intensity distribution function[J]. Optical Society of America, 1967, 57(3): 323-329. doi:  10.1364/JOSA.57.000323
    [13] CHU H Q, LIU F S, ZHOU H, Calculations of gas thermal radiation transfer in one dimensional planar enclosure using LBL and SNB models[J]. Heat Mass Transfer, 2011, 54(21): 4736-4745.
    [14] Hamins A, Anderson D T, Miller J H. Mechanistic studies of toluene destruction in diffusion flames[J]. Combustion Science & Technology, 1990, 71(4-6): 175-195.
    [15] Gordon I E, Rothman L S, Hill C, et al. The HITRAN2016 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2017, 130(11): 4-50. https://www.sciencedirect.com/science/article/pii/S0022407317301073
    [16] Elsasser W M. Heat Transfer by Infrared Radiation in the Atmosphere[M]. Harvard: Harvard University Press, 1943: 43-45.
    [17] Goody R M. A statistical model for water vapour absorption[J]. Quarterly Journal of the Royal Meteorological Society, 1952, 78(336): 165-169. doi:  10.1002/qj.49707833604
    [18] Soufiani A, Taine J. High temperature gas radiative property parameters of statistical narrow band model for H2O, CO2 and CO and correlated k model for H2O and CO2[J]. Heat Mass Transfer, 1997, 40(4): 987–991. doi:  10.1016/0017-9310(96)00129-9
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  142
  • HTML全文浏览量:  62
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-08
  • 修回日期:  2021-04-25
  • 刊出日期:  2022-03-20

目录

    /

    返回文章
    返回