[1]赵利鸿,高强,于晓,等.基于红外图像的绝缘子提取方法[J].红外技术,2020,42(9):840-845.[doi:10.11846/j.issn.1001_8891.202009005]
 ZHAO Lihong,GAO Qiang,YU Xiao,et al.Insulator Extraction Method Based on Infrared Image[J].Infrared Technology,2020,42(9):840-845.[doi:10.11846/j.issn.1001_8891.202009005]
点击复制

基于红外图像的绝缘子提取方法
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
42卷
期数:
2020年第9期
页码:
840-845
栏目:
出版日期:
2020-09-23

文章信息/Info

Title:
Insulator Extraction Method Based on Infrared Image
文章编号:
1001-8891(2020)09-0840-06
作者:
赵利鸿高强于晓李大华
天津理工大学 电气电子工程学院,天津市复杂系统控制理论及应用重点实验室
Author(s):
ZHAO LihongGAO QiangYU XiaoLI Dahua
School of Electrical & Electronic Engineering, and Tianjin Key Laboratory for Control Theory & Applications in Complicated Systems, Tianjin University of Technology
关键词:
绝缘子红外图像SURF特征点FCM算法图像开运算
Keywords:
insulator infrared image SURF feature points FCM algorithm image opening operation
分类号:
TN219
DOI:
10.11846/j.issn.1001_8891.202009005
文献标志码:
A
摘要:
绝缘子是输电线路上的重要设备,若发生故障会给电力设备带来巨大损失,从拍摄的输电线路红外图像中定位和提取绝缘子,基本上能反映多种绝缘子故障,在绝缘子的识别和故障诊断中更具实用性。本文提出了一种基于红外图像的绝缘子提取方法,依次使用Speeded Up Robust Features(SURF)算法提取测试红外图像的关键特征点、基于改进Fuzzy C-means(FCM)算法聚类划分特征点、根据绝缘子的形状特征值识别和定位绝缘子、基于改进的图像开运算精确提取绝缘子。该方法充分发挥了红外图像的优点,能够准确提取绝缘子,为基于红外图像的绝缘子故障诊断奠定了基础。
Abstract:
Insulators are important equipment on the transmission line. if fault occurs, it will bring huge loss to power equipments. Locating and extracting insulator from infrared image of transmission line can basically reflect a variety of insulator faults, which is more practical in insulator identification and fault diagnosis.This paper proposes an insulator recognition method based on infrared images, which sequentially use the Speeded Up Robust Features (SURF) algorithm to extract the key feature points of the test infrared images, cluster the feature points based on the improved Fuzzy C-means (FCM) algorithm, identify and locate the insulators according to the shape feature values of the insulators and precise extraction of insulators based on improved image opening operation. This method makes full use of the advantages of infrared images and can accurately extract insulators, which lays a foundation for insulator fault diagnosis based on infrared images.

参考文献/References:

[1]? 王淼, 杜伟, 孙鸿博, 等. 基于红外图像识别的输电线路故障诊断方法[J]. 红外技术, 2017, 39(4): 383-386.
WANG Miao,DU Wei,SUN Hongbo, et al. Transmission Line Fault Diagnosis Method Based on Infrared Image Recognition[J]. Infrared Technology, 2017, 39(4): 383-386.
[2]? 刘正庭, 尹骏刚, 李凯迪, 等. 基于分水岭算法的绝缘子串红外图像分割方法[J]. 电瓷避雷器, 2020(2): 216-221, 228.
LIU Zhengting, YIN Jungang, LI Kaidi, et al. Infrared Image Segmentation of Insulator Strings Based on Watershed Algorithm[J]. Insulators and Surge Arresters, 2020(2): 216-221, 228.
[3]? 付强, 姚建刚, 李唐兵, 等. 基于红外图像的绝缘子串钢帽和盘面区域自动提取方法[J]. 红外技术, 2016, 38(11): 969-974, 979.
FU Qiang,YAO Jiangang,LI Tangbing, et al. The Automatic Extraction Method of the Insulator String’s Steel Capsand Disks Area Based on Infrared Image[J]. Infrared Technology, 2016, 38(11): 969-974, 979.
[4]? 张晓春, 欧阳广泽, 何洪英, 等. 基于红外图像匹配的零值绝缘子检测[J]. 电测与仪表, 2019, 56(6): 100-105.
ZHANG Xiaochun, OUYANG Guangze, HE Hongying, et al. Zero-insulator detection based on infrared images matching[J]. Electrical Measurement & Instrumentation, 2019, 56(6): 100-105.
[5]? 张也, 彭子健, 付强, 等. 环境湿度对瓷质绝缘子串电压分布及红外热像检测的影响分析[J]. 电网技术, 2018, 42(4): 1342-1349.
ZHANG Ye, PENG Zijiang, FU Qiang, et al. Analysis of Environment Humidity Influence on Voltage Distribution and Infrared ThermalImage Detection of Porcelain Insulator Strings[J]. Power System Technology, 2018, 42(4): 1342-1349.
[6]? Oliveira J P S de, Conci A, Pérez M G, et al. Segmentation of infrared images: A new technology for early detection of breast diseases[C]//IEEE International Conference on Industrial Technology, Seville, 2015: 1765-1771.
[7]? ZHAO Q, Xiao-li L, YU L, et al. A fuzzy clustering image segmentation algorithm based on Hidden Markov Random Field models and Voronoi Tessellation[J]. Pattern Recognition Letters, 2017, 85(1): 49-55.
[8]? ZHANG R, ZHU S, ZHOU Q. A novel gradient vector flow snake model based on convex function for infrared image segmentation[J]. Sensors, 2016, 16(10): 1756.
[9]? BAI X,WANG Y, GUO S. Symmetry Information Based Fuzzy Clustering for Infrared Pedestrian Segmentation[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(4): 1946-1959.
[10]? ZHANG H, HONG X. Infrared image segmentation for photovoltaic panels based on Res-UNet[C]//IEEE Pattern Recognition and Computer Vision, 2019: 611-622.
[11]? HE L, HUANG S. Modified firefly algorithm based multi-level thresholding for color image segmentation[J]. Neurocomputing, 2017, 240(5): 152-174.
[12]? YANG X, GAO X, TAO D, et al. An efficient MRF embedded level set method for image segmentation[C]//IEEE Transactions on Image Processing, 2015, 24(1): 9-21.
[13]? NIU S, CHEN Q, JI Z, et al. Robust noise region-based active contour model via local similarity factor for image segmentation[J]. Pattern Recognition, 2017, 61(7): 104-119.

相似文献/References:

[1]郭水旺,王宝红,季钢,等.基于基因表达式编码算法的红外图像轮廓提取[J].红外技术,2013,35(01):038.
 GUO Shui-wang,WANG Bao-hong,JI Gang,et al. Infrared Image Contour Extraction Based on the Gene Expression Coding Algorithm[J].Infrared Technology,2013,35(9):038.
[2]孙爱平,皮冬明,安长亮,等. 光机装校阶段红外与可见光图像配准技术研究[J].红外技术,2013,35(01):050.
 SUN Ai-ping,PI Dong-ming,AN Chang-liang,et al. Study on IR/Visible Image Registration for Lens Assembly[J].Infrared Technology,2013,35(9):050.
[3]路建方,王新赛,肖志洋,等. 基于FPGA的红外图像自适应分段线性增强算法[J].红外技术,2013,35(02):102.
 LU Jian-fang,WANG Xin-sai,XIAO Zhi-yang,et al. An Adaptive Piecewise Linear Enhance Algorithm for Infrared Image Based on FPGA[J].Infrared Technology,2013,35(9):102.
[4]徐铭蔚,李郁峰,陈念年,等.多尺度融合与非线性颜色传递的微光与红外图像染色[J].红外技术,2012,34(12):722.
 XU Ming-wei,LI Yu-feng,CHEN Nian-nian,et al. Coloration of the Low Light Level and Infrared Image Using Multi-scale Fusion and Nonlinear Color Transfer Technique[J].Infrared Technology,2012,34(9):722.
[5]纪利娥,杨风暴,王志社,等. 基于边缘图像和SURF特征的可见光与红外图像的匹配算法[J].红外技术,2012,34(11):629.
 JI Li-e,YANG Feng-bao,WANG Zhi-she,et al.Visible and Infrared Image Matching Algorithm Based on Edge Image and SURF Features[J].Infrared Technology,2012,34(9):629.
[6]张红辉,罗海波,余新荣,等. 改进的神经网络红外图像非均匀性校正方法[J].红外技术,2013,35(04):232.
[7]张强,侯宁,刘红燕. 红外焦平面阵列非均匀性多点实时压缩校正研究[J].红外技术,2012,34(10):593.
 ZHANG Qiang,HOU Ning,LIU Hong-yan. Study on Real-time Multi-points Compressive Nonuniformity Correction of IRFPA[J].Infrared Technology,2012,34(9):593.
[8]路建方,王新赛,肖志洋,等. 基于灰度分层的FPGA红外图像伪彩色实时化研究[J].红外技术,2013,35(05):285.
 LU Jian-fang,WANG Xin-sai,XIAO Zhi-yang,et al. The Research on Real-time Pseudo-color of Infrared Image in FPGA Based on Gray Delaminating[J].Infrared Technology,2013,35(9):285.
[9]陈钱.红外图像处理技术现状及发展趋势[J].红外技术,2013,35(06):311.
 CHEN Qian.The Status and Development Trend of Infrared Image Processing Technology[J].Infrared Technology,2013,35(9):311.
[10]谭东杰,张安.基于局部直方图规定化的红外图像非均匀性校正[J].红外技术,2013,35(06):325.
 TAN Dong-jie,ZHANG An.Non-uniformity Correction Based on Local Histogram Specification[J].Infrared Technology,2013,35(9):325.
[11]徐向军,王生鹏,纪青春,等.基于高斯尺度空间GHT的绝缘子红外图像识别方法[J].红外技术,2014,36(7):596.[doi:10.11846/j.issn.1001_8891.201407016]
 XU Xiang-jun,WANG Sheng-peng,JI Qing-chun,et al.Insulator Infrared Image Recognition Method?Based on Gaussian Scale-space and GHT[J].Infrared Technology,2014,36(9):596.[doi:10.11846/j.issn.1001_8891.201407016]

备注/Memo

备注/Memo:
收稿日期:2020-06-16;修订日期:2020-09-07.
作者简介:赵利鸿(1995-),女,硕士研究生,主要研究领域为图像处理。E-mail: 1532124982@qq.com。
基金项目:天津市自然科学基金资助项目(18JCQNJC01000);国家自然科学基金资助项目(61502340);天津市教委科研计划项目(2018KJ133)。

更新日期/Last Update: 2020-09-18