[1]林仁浦,张力,马晨晖,等.改进的深度反投影网络红外图像超分辨率重建[J].红外技术,2020,42(9):873-879.[doi:10.11846/j.issn.1001_8891.202009009]
 LIN Renpu,ZHANG Li,MA Chenhui,et al.Improved Super-resolution Reconstruction of Infrared ImagesBased on Deep Back-projection Networks[J].Infrared Technology,2020,42(9):873-879.[doi:10.11846/j.issn.1001_8891.202009009]
点击复制

改进的深度反投影网络红外图像超分辨率重建
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
42卷
期数:
2020年第9期
页码:
873-879
栏目:
出版日期:
2020-09-23

文章信息/Info

Title:
Improved Super-resolution Reconstruction of Infrared ImagesBased on Deep Back-projection Networks

文章编号:
TP183
作者:
林仁浦1张力1马晨晖1刘轩1张豪2
1. 火箭军工程大学;
2. 31608部队
Author(s):
LIN Renpu1ZHANG Li1MA Chenhui1LIU Xuan1ZHANG Hao2
1. Rocket Force University of Engineering;?
2. 31608 Troops
关键词:
红外图像超分辨率深度反投影网络
Keywords:
infrared images super-resolution deep back-projection networks
分类号:
TP183
DOI:
10.11846/j.issn.1001_8891.202009009
文献标志码:
A
摘要:
深度反投影网络在可见光图像的超分辨率重建中具有优异的表现,本文探索将深度反投影网络应用到红外图像超分辨率重建中。针对红外图像对比度低、图像质量不高的特点,在深度反投影网络框架上作如下改进:在上采样模块之前添加串联层,将前一次的下采样输出和原始低分辨率预处理图像串联作为上采样模块的输入,以此提高网络获取图像高频信息的能力,增强生成图像的细节信息。实验结果证明,本文算法较改进前能够得到细节更加丰富、视觉效果更加良好的红外超分辨率重建图像。
Abstract:
Deep back-projection networks have excellent performance in the super-resolution reconstruction of visual images. This paper explores the application of deep back-projection networks to the super-resolution reconstruction of infrared images. In view of the characteristics of low infrared image contrast and low image quality, the following improvements were made in the framework of the deep back-projection network: adding a concatenation layer before the upsampling module, cascading the previous downsampling output and the original low-resolution preprocessed image as the input of the upsampling module. This was designed to improve the network’s ability to obtain high-frequency information of the image and enhance the detail of the generated image. The experimental results proved that the proposed algorithm could create infrared super-resolution reconstructed images with richer details and improved visual effects.

参考文献/References:

[1] DONG W, SHI G, LI X, et al. Image reconstruction with locally adaptive sparsity and nonlocal robust regularization[J]. Image Communication, 2012, 27(10): 1109-1122.
[2] YANG H, HUANG Z. Fast image interpolation algorithm based on gradient[J]. Journal of Computer Applications, 2013, 32(10): 2821-2823.
[3] Papyan V, Elad M. Multi-Scale Patch-Based Image Restoration[J]. IEEE Transactions on Image Processing, 2015, 25: 249-261.
[4] 王威, 张彤, 王新. 用于图像超分辨率重构的深度学习方法综述[J]. 小型微型计算机系统, 2019, 40(9): 1891-1896.
WANG Wei, ZHANG Tong, WANG Xin. Survey of Single Image Super-resolution Based on Deep Learning[J]. Journal of Chinese Computer Systems, 2019, 40(9): 1891-1896.
[5] DONG C , LOY C C , HE K , et al. Image Super-Resolution Using Deep Convolutional Networks[J]. IEEE Trans Pattern Anal Mach Intell, 2016, 38(2): 295-307.
[6] DONG C, LOY C C, TANG X. Accelerating the super-resolution convolutional neural network[C]//European Conference on Computer Vision, 2016: 391-407.
[7] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1646-1654.
[8] Haris M, Shakhnarovich G, Ukita N. Deep Back-Projection Networks for Super-Resolution[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 1664-1673.
[9] SOCARRAS Y, RAMOS S, VAZQUEZ D, et al. Adapting Pedestrian Detection from Synthetic to Far Infrared Images[C]//ICCV – Workshop on Visual Domain Adaptation and Dataset Bias, 2013: 1-3.
[10] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
[11] ZHANG L , WU X. An edge-guided image interpolation algorithm via directional filtering and data fusion[J]. IEEE Trans Image Process, 2006, 15(8): 2226-2238。

相似文献/References:

[1]郭水旺,王宝红,季钢,等.基于基因表达式编码算法的红外图像轮廓提取[J].红外技术,2013,35(01):038.
 GUO Shui-wang,WANG Bao-hong,JI Gang,et al. Infrared Image Contour Extraction Based on the Gene Expression Coding Algorithm[J].Infrared Technology,2013,35(9):038.
[2]孙爱平,皮冬明,安长亮,等. 光机装校阶段红外与可见光图像配准技术研究[J].红外技术,2013,35(01):050.
 SUN Ai-ping,PI Dong-ming,AN Chang-liang,et al. Study on IR/Visible Image Registration for Lens Assembly[J].Infrared Technology,2013,35(9):050.
[3]路建方,王新赛,肖志洋,等. 基于FPGA的红外图像自适应分段线性增强算法[J].红外技术,2013,35(02):102.
 LU Jian-fang,WANG Xin-sai,XIAO Zhi-yang,et al. An Adaptive Piecewise Linear Enhance Algorithm for Infrared Image Based on FPGA[J].Infrared Technology,2013,35(9):102.
[4]徐铭蔚,李郁峰,陈念年,等.多尺度融合与非线性颜色传递的微光与红外图像染色[J].红外技术,2012,34(12):722.
 XU Ming-wei,LI Yu-feng,CHEN Nian-nian,et al. Coloration of the Low Light Level and Infrared Image Using Multi-scale Fusion and Nonlinear Color Transfer Technique[J].Infrared Technology,2012,34(9):722.
[5]纪利娥,杨风暴,王志社,等. 基于边缘图像和SURF特征的可见光与红外图像的匹配算法[J].红外技术,2012,34(11):629.
 JI Li-e,YANG Feng-bao,WANG Zhi-she,et al.Visible and Infrared Image Matching Algorithm Based on Edge Image and SURF Features[J].Infrared Technology,2012,34(9):629.
[6]张红辉,罗海波,余新荣,等. 改进的神经网络红外图像非均匀性校正方法[J].红外技术,2013,35(04):232.
[7]张强,侯宁,刘红燕. 红外焦平面阵列非均匀性多点实时压缩校正研究[J].红外技术,2012,34(10):593.
 ZHANG Qiang,HOU Ning,LIU Hong-yan. Study on Real-time Multi-points Compressive Nonuniformity Correction of IRFPA[J].Infrared Technology,2012,34(9):593.
[8]路建方,王新赛,肖志洋,等. 基于灰度分层的FPGA红外图像伪彩色实时化研究[J].红外技术,2013,35(05):285.
 LU Jian-fang,WANG Xin-sai,XIAO Zhi-yang,et al. The Research on Real-time Pseudo-color of Infrared Image in FPGA Based on Gray Delaminating[J].Infrared Technology,2013,35(9):285.
[9]陈钱.红外图像处理技术现状及发展趋势[J].红外技术,2013,35(06):311.
 CHEN Qian.The Status and Development Trend of Infrared Image Processing Technology[J].Infrared Technology,2013,35(9):311.
[10]谭东杰,张安.基于局部直方图规定化的红外图像非均匀性校正[J].红外技术,2013,35(06):325.
 TAN Dong-jie,ZHANG An.Non-uniformity Correction Based on Local Histogram Specification[J].Infrared Technology,2013,35(9):325.
[11]姚 敏,周 勤.一种低匹配误差敏感度的红外图像超分辨率算法[J].红外技术,2016,38(10):864.[doi:10.11846/j.issn.1001_8891.201610010]
 YAO Min,ZHOU Qin.An Infrared Images Super-resolution Algorithm with Low Registration Error Sensitivity [J].Infrared Technology,2016,38(9):864.[doi:10.11846/j.issn.1001_8891.201610010]
[12]廖小华,陈念年,蒋勇,等.改进的卷积神经网络红外图像超分辨率算法[J].红外技术,2020,42(1):075.[doi:10.11846/j.issn.1001_8891.202001011]
 LIAO Xiaohua,CHEN Niannian,JIANG Yong,et al.Infrared Image Super-resolution Using Improved Convolutional Neural Network[J].Infrared Technology,2020,42(9):075.[doi:10.11846/j.issn.1001_8891.202001011]

备注/Memo

备注/Memo:
收稿日期:2020-06-15;修订日期:2020-09-03.
作者简介:林仁浦(1991-),男,硕士,主要从事数字图像处理和超分辨率研究工作。E-mail:18752659887@163.com

更新日期/Last Update: 2020-09-18