[1]程海娟,杨伟声,蔡 毅,等.LaF3作低折射率膜料制备Ge基底高性能长波红外增透膜[J].红外技术,2020,42(8):758-762.[doi:doi:10.11846/j.issn.1001_8891.202008009]
 CHENG Haijuan,YANG Weisheng,CAI Yi,et al.High-Performance LWIR Antireflective Films Fabrication on Ge Substrate Using LaF3 as Low Refractive Index Material [J].Infrared Technology,2020,42(8):758-762.[doi:doi:10.11846/j.issn.1001_8891.202008009]
点击复制

LaF3作低折射率膜料制备Ge基底高性能长波红外增透膜
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
42卷
期数:
2020年第8期
页码:
758-762
栏目:
出版日期:
2020-08-23

文章信息/Info

Title:
High-Performance LWIR Antireflective Films Fabrication on Ge Substrate
Using LaF3 as Low Refractive Index Material
文章编号:
1001-8891(2020)08-0758-05
作者:
程海娟12杨伟声2蔡 毅1于晓辉2李汝劼2王 柯2赵劲松2王岭雪1
1. 北京理工大学 光电学院,北京 100081;2. 昆明物理研究所,云南 昆明 650217
Author(s):
CHENG Haijuan12YANG Weisheng2CAI Yi1YU Xiaohui2LI Rujie2 WANG Ke2ZHAO Jinsong2WANG Lingxue1
1. School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China;
2. Kunming Institute of Physics, Kunming 650223, China
关键词:
LaF3长波红外高性能增透膜
Keywords:
LaF3long wave infrared bandhigh performance antireflective film
分类号:
O439
DOI:
doi:10.11846/j.issn.1001_8891.202008009
文献标志码:
A
摘要:
 为改善Ge基底红外长波增透膜的耐恶劣环境性,研究了LaF3晶体作为低折射率材料的膜系设计过程和制备工艺。通过优化膜系结构和分段制备LaF3层技术获得了高光学性能的多层增透膜。在8~12  mm波段,峰值透过率达到98.3%,双面镀膜平均透过率从48.4%提高到96.2%。力学性能、环境试验结果显示,基于LaF3材料的长波高效增透膜在保持高的光能量透过的同时还可以经受较为恶劣的环境测试。
Abstract:
To improve the resistance of long wave infrared (LWIR) band antireflective films on Ge in harsh environments, film design and fabrication technology have been discussed using LaF3 as a low refractive index material. We fabricated high-performance multilayer antireflection (AR) coatings in an LWIR band (8–12  mm) via an optimized film structure and sectional preparation of LaF3 layer on Ge substrate. The peak transmittance was 98.3%, and the average transmittance increased from 48.4% to 96.2% when double-sided coating was used. This LWIR AR coating with LaF3 passed various environmental, durability, and mechanical properties tests while maintaining good optical properties.

参考文献/References:

[1] Firoozifar S A R, Behjat A E, Kadivar S M B, et al. A study of the optical properties and adhesion of zinc sulfide anti-reflection thin film coated on a germanium substrate[J]. Applied Surface Science, 2011, 258: 818-821.
[2] 张兴德, 刘琳, 李荣刚. 机载光电设备红外窗口技术[J]. 红外与激光工程, 2010, 39(4): 601-606.
ZHANG Xingde, LIU Lin, LI Ronggang. Infrared optical window for airborne photoelectric equipments[J]. Infrared and Laser Engineering, 2010, 39(4): 601-606.
[3] YOHEI MATSUOKA, SYLVAIN MATHONNÈIRE, SVEN PETERS, et al. Broadband multilayer anti-reflection coating for mid-infrared range from 7 ?m to 12 ?m [J]. Applied Optics, 2018, 57(7): 1645-1649.
[4] 杨玉萍, 字正华, 钟辉, 等. 霉菌对Ge、ZnS和ZnSe膜层的影响[J]. 红外技术, 2016, 38(12): 1078-1081.
YANG Yuping, ZI Zhenghua, ZHONG Hui, et al. Impact of fungus on films on Ge, ZnS and ZnSe[J]. Infrared Technology, 2016, 38(12): 1078-1081.
[5] 陈霞, 陆改玲, 计晶晶, 等. 稀土元素镧掺杂TiO2复合材料的制备及其抑菌性研究[J]. 化工新型材料, 2020, 48(4): 98-107.
CHEN Xia, LU Gailing, JI Jingjing, et al. Preparation and antibacterial activity of La doped TiO2 composite [J]. New Chemical Materials, 2020, 48(4): 98-107.
[6] 郭效军, 蒲茂杰, 杨志刚, 等. 石墨烯/LaF3的制备及其作为水基润滑剂的摩擦学性能研究[J]. 摩擦学学报, 2019, 39(1): 35-42.
GUO Xiaojun, PU Maojie, YANG Zhigang, et al. Synthesis, structure and tribological properties of Graphene/LaF3 composites as water-based lubricant additives [J]. Tribology, 2019, 39(1): 35-42.
[7] 李春, 金春水, 靳京城, 等. 193 nm P偏振光大角度减反射膜的实现[J]. 中国激光, 2013, 40(9): 0907001-1-5.
LI Chun, JIN Chunshui, JIN Jingcheng, et al. Realization of antireflection coatings for 193 nm P-polarized light at large angle[J]. Chinese J. Laser, 2013, 40(9): 0907001-1-5.
[8] WANG Xiaodong, CHEN Bo, YAO Ling. Design and fabrication of far-ultraviolet reflective broadband filter based on dielectric materials[J]. Applied Spectroscopy, 2018, 72(6): 943-946.
[9] Won Tae, Seoung Jae IM, Jeon Geon HAN1, et al. LaF3/MgO protective layer in AC-Plasma display panels [J]. Jpn. J. Appl. Phys, 2003, 42(7A): 4501-4503.
[10] LI Bin, XIE Ping, SU Weitao, et al. Combinatorial synthesis of BaClF -ReF3 (Re=La, Pr, Er, Sm) layers with graded-index as anti- reflection coatings in the thermal infrared[J]. Materials & Design, 2016, 107: 302-310.
[11] 程海娟, 于晓辉, 彭浪, 等. Ge基底LaF3-ZnS-Ge 高耐用中波红外增透膜[J]. 红外与激光工程, 2019, 48 (11): 1117001-1-7.
CHENG Haijuan, YU Xiaohui, PENG Lang, et al. LaF3-ZnS-Ge high-durability MWIR antireflective film on Ge substrate [J]. Infrared and Laser Engineering, 2019, 48(11): 1117001-1-7.
[12] Gainutdinov I S, Shuvalov N Yu, Sabirov R S, et al. Antireflection coatings on germanium and silicon substrates in the 3–5 ?m and 8–12 ?m windows of IR transparency[J]. J. Opt. Technol. 2009, 76(5): 302-305.
[13] 麦绿波, 缪金义, 王任贵, 等. 光学膜层通用规范: GJB 2485-1995[S]. 国防科学技术工业委员会, 1995.
MAI Lvbo, MIU Jinyi, WANG Rengui, et al. General specification for optical coatings: GJB 2485-1995 [S]. COSTIND, 1995.

相似文献/References:

[1]王远方舟,白玉琢,贾钰超,等.一种长波红外光学消热差系统设计[J].红外技术,2012,34(09):531.
 WANG Yuan-fanghzou,BAI Yu-zhuo,JIA Yu-chao,et al.A Design of FIR Athermal System[J].Infrared Technology,2012,34(8):531.
[2]贾星蕊,李训牛,王海洋,等.大变倍比长波红外连续变焦光学系统设计[J].红外技术,2012,34(08):463.
 JIA Xing-rui,LI Xun-niu,WANG Hai-yang,et al.Design of a LWIR Continuous Zooming Optic System with Large Zooming Range[J].Infrared Technology,2012,34(8):463.
[3]白玉琢,李茂忠,张莹昭,等.紧凑型长波致冷红外变焦距透镜系统[J].红外技术,2011,33(08):453.
 BAI Yu-zhuo,LI Mao-zhong,ZHANG Ying-zhao,et al.A Compact Long-Wave Infrared Cooled Zoom Lens System[J].Infrared Technology,2011,33(8):453.
[4]谢宝蓉,傅雨田,张滢清.320×256长波红外探测器低噪声采集系统设计[J].红外技术,2010,32(4):191.
 XIE Bao-rong,FU Yu-tian,ZHANG Ying-qing.Design of the Acquisition System with Low Noise?Based on 320×256 Long Wavelength Infrared Detector[J].Infrared Technology,2010,32(8):191.
[5]张 晓,王宏博,张腾飞,等.长波红外双线列探测器推扫图像配准技术研究[J].红外技术,2015,37(二):139.[doi:10.11846/j.issn.1001_8891.201502011]
 ZHANG Xiao,WANG Hong-bo,ZHANG Teng-fei,et al.Research of Push-broom Image Registration Technology for Double Linear LWIR Detector [J].Infrared Technology,2015,37(8):139.[doi:10.11846/j.issn.1001_8891.201502011]
[6]朱小红,蔺素珍,王栋娟.多波段红外点目标的夜视成像差异分析[J].红外技术,2015,37(四):289.[doi:10.11846/j.issn.1001_8891.201504005]
 ZHU Xiao-hong,LIN Su-zhen,WANG Dong-juan.Analysis of Multi-band Infrared Point Targets Night Vision Imaging Difference[J].Infrared Technology,2015,37(8):289.[doi:10.11846/j.issn.1001_8891.201504005]
[7]袁小春,杨智雄,余春超,等.长波红外高光谱成像光谱仪的辐射定标[J].红外技术,2015,37(五):431.[doi:10.11846/j.issn.1001_8891.201505013]
 YUAN Xiao-chun,YANG Zhi-xiong,YU Chun-chao,et al.Study of Radiation Calibration for LWIR Hyperspectral Imager Spectrometer[J].Infrared Technology,2015,37(8):431.[doi:10.11846/j.issn.1001_8891.201505013]
[8]陈 凯,孙德新,刘银年.长波红外系统三维噪声模型及其分析[J].红外技术,2015,37(八):676.[doi:10.11846/j.issn.1001_8891.201508009]
 CHEN Kai,SUN De-xin,LIU Yin-nian.3D Noise Model of LWIR System and Analysis[J].Infrared Technology,2015,37(8):676.[doi:10.11846/j.issn.1001_8891.201508009]
[9]姜 婷,王淦泉,席红霞.256×1长波红外焦平面器件低噪声信息获取电路研制[J].红外技术,2016,38(5):378.[doi:10.11846/j.issn.1001_8891.201605004]
 JIANG Ting,WANG Ganquan,XI Hongxia.Design of the Low-noise Information Acquisition Circuit for 256×1 LWIR FPA[J].Infrared Technology,2016,38(8):378.[doi:10.11846/j.issn.1001_8891.201605004]
[10]王红伟,束慧琴,陈吕吉,等.20×长波红外连续变焦热像仪光机系统设计[J].红外技术,2016,38(11):924.[doi:10.11846/j.issn.1001_8891.201611004]
 WANG Hongwei,SHU Huiqin,CHEN Lvji,et al.Optical and Mechanical Design of LWIR Continuous Zoom Thermal Imager with 20× Zoom Range[J].Infrared Technology,2016,38(8):924.[doi:10.11846/j.issn.1001_8891.201611004]

备注/Memo

备注/Memo:
收稿日期:2020-05-15;修订日期:2020-06-20.
作者简介:程海娟(1977-),女,高级工程师,博士研究生,主要研究领域为红外光学镀膜、增透微纳结构。E-mail:joananne@126.com。
通信作者:王岭雪(1973-),女,副教授,博士,主要从事红外成像和图像处理和红外光谱的研究工作。E-mail:neobull@bit.edu.cn。
基金项目:国家自然科学基金(61471044)。
更新日期/Last Update: 2020-08-19