[1]李汝劼,唐利斌,张玉平,等.红外量子点及其光电探测器研究进展[J].红外技术,2020,42(5):405-419.[doi:10.11846/j.issn.1001_8891.202005001]
 LIRujie,TANG Libin,ZHANG Yuping,et al.Research Progress of Infrared Colloidal Quantum Dots and Their Photodetectors[J].Infrared Technology,2020,42(5):405-419.[doi:10.11846/j.issn.1001_8891.202005001]
点击复制

红外量子点及其光电探测器研究进展
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
42卷
期数:
2020年第5期
页码:
405-419
栏目:
出版日期:
2020-05-23

文章信息/Info

Title:
Research Progress of Infrared Colloidal Quantum Dots and Their Photodetectors
文章编号:
10.11846/j.issn.1001_8891.202005001
作者:
李汝劼123唐利斌123张玉平13赵清2
1. 昆明物理研究所;2. 北京理工大学 物理学院;
3. 云南省先进光电材料与器件重点实验室

Author(s):
LIRujie123TANG Libin123ZHANG Yuping13ZHAO Qing2
1.Kunming Institute of Physics; 2.School of Physics, Beijing Institute of Technology;
3. Yunnan State Key Laboratory of Advanced Photoelectric Materials and Devices

关键词:
量子点光电探测器材料制备光电器件
Keywords:
quantum dot photodetector material preparation photoelectric device
分类号:
TN204
DOI:
10.11846/j.issn.1001_8891.202005001
文献标志码:
A
摘要:
红外技术为现代社会提供了包括遥感、成像、计量、产品检验、环境监测及生物医学诊断等诸多领域的应用价值。第三代红外光电探测器对易制造、低成本、可调节的红外光电材料的需求,推动了红外量子点的发展。本文阐述红外量子点的制备方法,概述了红外胶体量子点探测器研究发展历程,并列举了红外胶体量子点在光电领域的代表性研究成果。最后对红外量子点光电探测器研究进展进行了总结,提出了几个亟待解决的研究问题。为红外量子点探测器商业化提出了指导。
Abstract:
Infrared technologies provide tremendous value to our modern-day society, in the fields of remote sensing, imaging, metrology, product inspection, environmental monitoring, and biomedical diagnostics. The demand for the third-generation infrared photodetectors, to enable easy-to-fabricate, low-cost, and tunable infrared active optoelectronic materials, has driven the development of infrared colloidal quantum dots (CQDs). This review introduces the preparation methods of infrared CQDs and development of infrared CQD detectors, and lists the representative research results of CQDs in the field of optoelectronics. Finally, the infrared quantum dot photodetectors are summarized, and several research problems are proposed. The results of this study guide the commercialization of the infrared quantum dot detector.

参考文献/References:

[1]? ?Lohse S Emedicine, Murphy C J, Am J. Applications of colloidal inorganic nanoparticles: to energy[J]. Chem. Soc., 2012, 134(38): 15607-15620.
[2]? ?Schaller R D, Sykora M, J M P, et al. Seven Excitons at a Cost of One:? Redefining the Limits for Conversion Efficiency of Photons into Charge Carriers[J]. Nano Letters, 2006, 6(3): 424-429.
[3]? ?QIN H, NIU Y, MENG R, et al. Single-Dot Spectroscopy of Zinc-Blende CdSe/CdS Core/Shell Nanocrystals: Nonblinking and Correlation with Ensemble Measurements[J]. J. Am. Chem. Soc., 2014, 136(1): 179-187.
[4]? ?Lance M Wheeler, Nicholas C Anderson, Peter K B Palomaki, et al. Silyl Radical Abstraction in the Functionalization of Plasma- Synthesized Silicon Nanocrystals[J]. Chem. Mater., 2015, 27: 6869-6878.
[5]? ?NI Zhenyi, MA Lingling, DU Sichao, et al. Plasmonic Silicon Quantum Dots Enabled High-Sensitivity Ultrabroadband Photodetection of Graphene-Based Hybrid Phototransistors[J]. ACS Nano, 2017, 11: 9854-9862.
[6]? ?Ruddy D A, Johnson J C, Smith E R, et al. Size and Bandgap Control in the Solution-Phase Synthesis of Near-Infrared-Emitting Germanium Nanocrystals[J]. ACS Nano, 2010, 4: 7459-7466.
[7]? ?Konstantatos G, Howard I, Fischer A, et al. Ultrasensitive solution-cast quantum dot photodetectors[J]. Nature, 2006, 442(7099): 180-183.
[8]? ?Galileo Sarasqueta, Kaushik Roy, Choudhury Franky So, et al. Ultrasensitive solution-cast quantum dot photodetectors[J]. Chem. Mater., 2010, 22: 496-3501.
[9]? ?Pietryga J M, SchallerR D, Werder D, et al. Pushing the Band Gap Envelope: Mid-Infrared Emitting Colloidal PbSe Quantum Dots[J]. J. Am. Chem. Soc., 2004, 126: 11752-11753.
[10]? ?Loredana Protesescu, Tanja Zìnd, Maryna I Bodnarchuk, et al. Air-Stable, Near- to Mid-Infrared Emitting Solids of PbTe/CdTeCore– Shell Colloidal quantum dots[J]. Chem. Phys. Chem., 2016, 17: 670-674.
[11]? ?GU Yue, TANG Libin, GUO Xiaopeng, et al. Preparation and photoelectric properties of cadmium sulfide quantum dots[J]. Chin. Phys. B, 2019, 28(4): 047803.
[12]? ?Vidya P Deviprasad, Hemant Ghadi, Debabrata Das, et al. High performance short wave infrared photodetector using p-i-p quantum dots (InAs/GaAs) validated with theoretically simulated model[J]. J. Alloys and Compounds, 2019, 804: 8-26.
[13]? ?David Z Ting, Alexander Soibel, Cory J Hill, et al. High operating temperature midwave quantum dot barrier infrared detector (QD-BIRD)[C]//Proc. of SPIE, 2012: 835332-2.
[14]? ?ZHANG Y, HONG G, ZHANG Y, et al. Ag2S Quantum Dot: A Bright and Biocompatible Fluorescent Nanoprobe in the Second Near-Infrared Window[J]. ACS Nano, 2012, 6: 695-3702.
[15]? ?ZHU C N, JIANG P, ZHANG Z L, et al. Ag2Se Quantum Dots with Tunable Emission in the Second Near-Infrared Window[J]. ACS Appl. Mater. Interfaces, 2013, 5: 1186-1189.
[16]? ?Mukherjee S, Maiti R, Katiyar A K, et al. Novel Colloidal MoS2 Quantum Dot Heterojunctions on Silicon Platforms for Multifunctional Optoelectronic Devices[J]. Scientific Reports, 2016, 6: 29016.
[17]? ?LI Yao, TANG Libin, LI Rujie, et al. SnS2 quantum dots: Facile synthesis, properties, and applications in ultraviolet photodetector[J]. Chinese Physics B, 2019, 28(3): 037801.
[18]? ?ZHU Bingqing, MENG Yuchen, ZHU Qiang, et al. Integrated Plasmonic Infrared Photodetector Based on Colloidal HgTe Quantum Dots[J]. Adv. Mater. Technol., 2019, 4: 1900354.
[19]? ?LI H, KANG Z, LIU Y, et al. Carbon nanodots: synthesis, properties and applications[J]. J. Materials Chemistry, 2012, 22(46): 24230.
[20]? ?PAN D, ZHANG J, LI Z, et al. Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots[J]. Advanced Materials, 2010, 22(6): 734-738.
[21]? ?WANG X, SUN G, Routh P, et al. Heteroatom-doped graphene materials: syntheses, properties and applications[J]. Chem. Soc. Rev., 2014, 43(20): 7067-7098.
[22]? ?LI Xueming, LAO Shuping, TANG Libin, et al. Sulphur doping: a facile approach to tune the electronic structure and optical properties of graphene quantum dots[J]. Nanoscale, 2014, 6(10): 5323-5328.
[23]? ?Baker D R, Kamat P V. Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures[J]. Advanced Functional Materials, 2009, 19(5): 805-811.
[24]? ?ZHAI C, ZHU M, PANG F, et al. High Efficiency Photoelectrocatalytic Methanol Oxidation on CdS Quantum Dots Sensitized Pt Electrode[J]. ACS Applied Materials & Interfaces, 2016, 8(9): 4772-4980.
[25]? ?SONG T, ZHANG F, LEI X, et al. Core–shell structured photovoltaic devices based on PbS quantum dots and silicon nanopillar arrays[J]. Nanoscale, 2012, 4(4): 1336.
[26]? ?LI Y, ZHU J, HUANG Y, et al. Efficient inorganic solid solar cells composed of perovskite and PbS quantum dots[J]. Nanoscale, 2015, 7(21): 9902-9907.
[27]? ?GAO W, WANG M, RAN C, et al. Facile one-pot synthesis of MoS2 quantum dots-graphene-TiO2 composites for highly enhanced photocatalytic properties[J]. Chemical Communications, 2014, 51(9): 1709-1712.
[28]? ?Chaudhuri R G, Paria S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications[J]. Chem. Rev., 2012, 112(4): 2373-2433.
[29]? ?La Mer, Dinegar V K, Theory R H. Production and Mechanism of Formation of Monodispersed Hydrosols[J]. J. Am. Chem. Soc., 1950, 72: 4847-4854.
[30]? ?Brandi M Cossairt. Light on Indium Phosphide Quantum Dots: Understanding the Interplay among Precursor Conversion, Nucleation, and Growth[J]. Chem. Mater., 2016, 28: 7181-7189.
[31]? ?Semonin O E, Luther J M, Beard M C. Quantum Dots for Next-Generation Photovoltaics[J]. Mater. Today, 2012, 15: 508-515.
[32]? ?Hines M A, Scholes G D. Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution[J]. Adv. Mater., 2003, 15: 1844-1849.
[33]? ?LU H P, Brutchey R L. Tunable Room-Temperature Synthesis of Coinage Metal Chalcogenide Nanocrystals from N-Heterocyclic Carbene Synthons[J]. Chem. Mater., 2017, 29: 1396-1403.
[34]? ?Talapin DV, Lee J, Kovalenko M V, et al. Prospects of colloidal nano crystalsfor electronic and optoelectronic applications[J]. Chem. Rev., 2010, 110(1): 389-458.
[35]? ?Mackenzie J D, Bescher E P. Chemical routes in the synthesis of nano material; using the sol-gel process[J]. Acc. Chem. Res., 2007, 40(9): 810-818.
[36]? ?Manna L, Scher E C, Alivisatos A R. Synthesisof soluble and process,able CaSe nanocrys[J]. J. Am Chem Soc., 2000, 122: 12700.
[37]? ?陈异, 高濂. 胶体法制备CdSe纳米晶[J]. 无机材料学报, 2002, 17(6): 289.
CHEN Yi, GAO Lian. Colloidal preparation of CdSe nanocrystals[J]. J. Inorganic Materials, 2002, 17(6): 289.
[38]? ?Taleb Makad, Uri Banin. Synthesis andproperties ofCdSe/ZnS coreshell nanorods[J]. Chem Malr., 2003, 15: 3955.
[39]? ?PENG Z A, PENG X G. Formation of Hight-Quality CdTe, CdSe, and CdS Nano crystals USillg CdO as PreCursor[J]. J. AIll. Chem. Soc., 2001, 123: 83-184.
[40]? ?Scott L Cumberland, Khalid M Hanif, Artjay Javier, et al. Inorganic Clusters as Single-Source Precursors for Preparation of CdSe, ZnSe, and CdSe/ZnS Nanomaterials[J]. Chem. Mater., 2002, 14(4): 1576-1584.
[41]? ?Marcus Jones, Shun S Lo, Gregory D Scholes. Quantitative modeling of the role of surface traps in CdSe/CdS/ZnS nanocrystal photoluminescence decay dynamics[J]. PNAS, 2009, 106(9): 3011-3016.
[42]? ?Haggatas W, Azad Malik M, Moteralli M. synthesis and characterization of some mixed alkylthiocarbamates of gallium and indium, precursors for III-VI matedals[J]. Chem Mater, 1995, 7(4): 716.
[43]? ?Nikolai GaponikDmitri V, TalapinAndrey L, RogachAlexander Eychmüller, et al. Efficient Phase Transfer of Luminescent Thiol-Capped Nanocrystals:? From Water to Nonpolar Organic Solvents[J]. Nano Letters, 2002, 2(8): 803-806.
[44]? ?LI H, SHI Wan Y, SHIH W H. Non-heavy-metal ZnS quantum dots withbright blue photoluminescence by a one-step aqueous synthesis[J]. Nanotechnology, 2007, 205604: 1-6.
[45]? ?ZHUO Ding, LIN Min, CHEN Zhaolai, et al. Simple Synthesis of Highly Luninescent Water-Soluble CdTe Quantum Dots with Controllable Surface Functionality[J]. Chem. Mater., 2011, 23: 4857-4862.
[46]? ?Colvin V L, Goldstein A N, Alivisatos A P. Semiconductor nanocrystals covalently bound to metal-surfaces with self-assembled monolayers[J]. J. Am. Chem.Soc., 1992, 114(13): 5221-5230.
[47]? ?Kortan A R, Hull R, Opila R L, et al. Nucleation and growth of CdSe on ZnS quantum crystallite seeds, and vice versa, in inverse micelle media[J]. J. Am. Chem. Soc., 1990, 112(4): 1327-1332.
[48]? ?Homer C F, Allan K A, Bard A J, et al. Demonstration of a shell-core structure in layered CdSe-ZnSe small particles by X-ray photoelectron and auger spectroscoples[J]. J. Phys. Chem., 1992, 96(9): 3812-3817.
[49]? ?Takayuki Hirai, Hiroshi Sato, Isao Komasawa. Mechanism of formation of CdS and ZnS ullrafine particles inreverse micelles[J]. Eng Chem Res., 1994, 33(12): 3262.
[50]? ?Colvin V L, Goldstein A N, Alivisatos A P. Semiconductor nanocrystals covaiently bound to metals Hrface with self-assemble monolaye[J]. J. Am. Chem. Soc., 1992, 114(13): 5221.
[51]? ?Ohde H, Ohde M, Bailey E, et a1. Water-in-CO2microemulsions as nanoreactors for synflaesizing CdS and ZnS nanoparticles in supercfiticalCO2[J]. Nano. Let., 2002, 2(7): 721.
[52]? ?Ghosh S, Saha M, Ashok V D, et al. Excitation dependent multicolor emission and photoconductivity of Mn, Cu doped In2S3 monodisperse quantum dots[J]. Nanotechnology, 2016, 27(15): 155708.
[53]? ?Nagesha D K, Liang X, Mamedov A A, et al. In2S3 Nanocolloids with Excitonic Emission: In2S3 vs CdS Comparative Study of Optical and Structural Characteristics[J]. J. Physical Chemistry B, 2001, 105(31): 7490-7498.
[54]? ?Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites[J]. J. Am. Chem. Soc., 1993, 115(19): 8706-8715.
[55]? ?Nicolau Y F. Solution deposition of thin solid compound films by a successive ionic-layer adsorption and reaction process[J]. Appli. Surface Science, 1985, 22-23(part-P2): 1061-1074.
[56]? ?DUAN J, TANG Q, HE B, et al. Efficient In2S3 Quantum dot sensitized Solar Cells: A Promising Power Conversion Efficiency of 1.30%[J]. Electrochimica Acta, 2014, 139: 381-385.
[57]? ?Yasuhiro Shirasaki1, Geoffrey J Supran, Moungi G Bawendi, et al. Emergence of colloidal quantum-dot light-emitting technologies[J]. Nature Photonics, 2013(7): 13-23.
[58]? ?Kim L A, Anikeeva P O, Coe-Sullivan S A, et al. Contact Printing of Quantum Dot Light-Emitting Devices[J]. NANO Letters, 2008, 8(12): 4513-4517.
[59]? ?Kim T H, Cho K S, Lee E K, et al. Full-colour quantum dot displays fabricated by transfer printing[J]. Nature Photonics, 2011, 5(3): 176-182.
[60]? ?XU J, Voznyy O, LIU M, et al. 2D Matrix Engineering for Homogeneous Quantum Dot Coupling in Photovoltaic Solids[J]. Nat. Nanotechnol., 2018, 13: 456-462.
[61]? ?WANG Y, Herron N. Photoconductivity of CdS nanocluster-doped polymers[J]. Chemical Physics Letters, 1992, 200(1-2): 71-75.
[62]? ?Murray C B, Norris D J, Bawendi M G. Synthesis and characterizationof nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites[J]. J. Am. Chem. Soc., 1993, 115: 8706-8715.
[63]? ?Guyot-Sionnest P, WANG C. Fast voltammetric and electrochromic response of semiconductor nanocrystal thin films[J]. J. Phys. Chem. B, 2003, 107: 7355-7359.
[64]? ?YU C, WANG P. Guyot-Sionnest. N-type conducting CdSe nanocrystalsolids[J]. Science, 2003, 300: 1277-1280.
[65]? ?Jarosz M V, Porter V J, Fisher B R, et al. Photoconductivity studies of treated CdSe quantum dot films exhibiting increased exciton ionization efficiency[J]. Phys. Rev. B, 2004, 70: 195327.
[66]? ?OertelD C, Bawendi M G, Arango A C, et al. Photodetectors based on treated CdSe quantum-dot films[J]. Appl. Phys. Lett., 2005, 87: 213505.
[67]? ?Murray C B, SUN S, Gaschler W, et al. Colloidal synthesis of nanocrystals and nanocrystal superlattices[J]. J. Res. Dev., 2001, 45: 47-56.
[68]? ?Hines M A, Scholes G D. Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution[J]. Adv. Mater., 2003, 15: 1844-1849.
[69]? ?Guzelian A A, Banin U, Kadavanich A V, et al. Colloidalchemical synthesis and characterization of InAs nanocrystal quantum dots[J]. Appl. Phys. Lett., 1996, 69: 1432.
[70]? ?DU H, CHEN C, Krishnan R, et al. Optical properties of colloidal PbSe nanocrystals[J]. Nano Lett., 2002, 2: 1321-1324.
[71]? ?Wehrenberg B L, WANG C, Guyot-Sionnest P. Interband and intrabandoptical studies of PbSe colloidal quantum dots[J]. J. Phys. Chem. B, 2002, 106: 10634-10640.
[72]? ?Mcdonald S A, Cyr P W, Levina L, et al. Photoconductivityfrom PbS-nanocrystal/semiconducting polymer composites for solutionprocessible, quantum-size tunable infrared photodetectors[J]. Appl. Phys. Lett., 2005, 85: 2089-2091.
[73]? ?Konstantatos G, Howard I, Fischer A, etal.Ultrasensitive solution-cast quantum dot photodetectors[J]. Nature, 2006, 442: 180.
[74]? ?Saran R, Curry R J. Lead sulphide nanocrystal photodetector technologies[J]. Nat. Photonics, 2016, 10: 81-92.
[75]? ?Manders J R, LAI TH, AN Y, et al. Low-noise multispectral photodetectors made from all solution-processedinorganic semiconductors[J]. Adv. Funct. Mater., 2014, 24: 7205-7210.
[76]? ?Klem E J D, Gregory C, Temple D, et al. PbS colloidal quantum dotphotodiodes for low-cost SWIR sensing[C]//Proc. SPIE, 2015, 9451: 945104.
[77]? ?Green M, Mirzai H. Synthetic routes to mercury chalcogenide quantumdots[J]. J. Mater. Chem. C, 2018, 6: 5097.
[78]? ?RogachA, Kershaw S V, Burt M, et al. Colloidally prepared HgTe nanocrystals with strong room-temperature infrared luminescence[J]. Adv. Mater., 1999, 11: 552-555.
[79]? ?Kim H, Cho K, Park B, et al. Optoelectronic characteristics of close-packed HgTe nanoparticles in the infraredrange[J]. Solid State Commun., 2006, 137: 315-319.
[80]? ?B?berl M, Kovalenko M V, Gamerith S, et al. Inkjet-printed nanocrystal photo detectors operating up to 3μm wavelengths[J]. Adv. Mater., 2007, 19: 3574-3578.
[81]? ?Keuleyan S, Lhuillier E, Brajuskovic V, et al. MidinfraredHgTe colloidal quantum dot photodetectors[J]. Nat. Photonics, 2011, 5(8): 489.
[82]? ?Keuleyan S E, Guyot-Sionnest P, Delerue C, et al. Mercury telluride colloidal quantum dots: Electronic structure, size-dependent spectra, and photocurrent detection up to 12 ?m[J]. ACS Nano, 2014, 8(8): 8676-8868.
[83]? ?Goubet N, Jagtap A, Livache C, et al. Terahertz HgTe nanocrystals: Beyond confinement[J]. J. Am. Chem. Soc., 2018, 140: 5033-5036 .
[84]? ?Guyot-Sionnest P, Roberts J A. Background limited mid-infrared photodetection with photovoltaic HgTe colloidal quantum dots[J]. Appl. Phys. Lett., 2015, 107: 253104.
[85]? ?Buurma C, Pimpinella R E, Ciani A J, et al. MWIR imaging with low cost colloidal quantum dot films[J]. Nanostruct. Devices Appl., 2016, 9933: 993303.
[86]? ?ZHAO Yaolong, LI Lingfei, LIU Shuaishuai, et al. Germanium quantum dot infrared photodetectors addressed by self-aligned silicon nanowire electrodes[J]. Nanotechnology, 2020, 31: 145602-145609.
[87]? ?Stylianos Siontasa, LI Dongfang, WANG Haobei, et al. High- erformance germanium quantum dot photodetectors in the visible and near infrared[J]. Mater. Sci. in Semiconductor Processing, 2019, 92: 19-27.
[88]? ?Nayyera Mahmoud, Willem Walravens, Jakob Kuhs, et al. Micro-Transfer-Printing of Al2O3 Capped Short-Wave-Infrared PbS Quantum Dot Photoconductors[J]. ACS Appl. Nano Mater., 2019, 2: 299-306.
[89]? ?Rauch T, Berl M B, Tedde S F, et al. Near-infrared imaging with quantum-dot-sensitized organic photodiodes[J]. Nature Photonics, 2009, 3(6): 332-336.
[90]? ?Mukherjee S, Jana S, Sinha T K, et al. Infrared tunable, two colour-band photodetectors on flexible platforms using 0D/2D PbS-MoS2 hybrids[J]. Nanoscale Adv., 2019, 1: 3279.
[91]? ?Guyot-Sionnest P, Roberts J A. Background limited mid-infrared photodetection with photovoltaic HgTe colloidal quantum dots[J]. Appl. Phys. Lett., 2015, 107: 253104.
[92]? ?Ciani A J, Pimpinella R E, Grein C H, et al. Colloidal quantum dots for low-cost MWIR imaging[C]//Proc. SPIE, 2016, 9819: 981919.
[93]? ?Buurma C, Pimpinella R E, Ciani A J, et al. MWIR imaging with low cost colloidal quantum dot films[C]//SPIE Nanoscience + Engineering, 2016: 9933.
[94]? ?CHEN Mengyu, SHAO Lei, Kershaw Stephen V, et al. Photocurrent Enhancement of HgTe Quantum Dot Photodiodes by Plasmonic Gold Nanorod Structures[J]. Acs Nano, 2014, 8(8): 8208-8216.
[95]? ?TANG X, Ackerman M M, CHEN M, et al. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes[J]. Nat. Photonics, 2019. doi:10.1038/s41566-019-0362-1.
[96]? ?Stijn Goossens, Gabriele Navickaite, Carles Monasterio, et al. Broadband image sensor array based on grapheme-CMOS integration[J]. Nat. Photonics, 2017, 11: 366-371.
[97]? ?Epimitheas Georgitzikis, Pawel E Malinowski, LI Yunlong, et al. Oganic- and QD-based image sensors integrated on 0.13 ?m CMOS ROIC for high resolution, multispectral infrared imaging[C]//SPIE, 2016: 11407-43.
[98]? ?Epimitheas Georgitzikis, Pawel E Malinowski, LI Yunlong, et al. Integration of PbS quantum dot photodiodes on silicon for NIR imaging[C]//IEEE Sensors, 2019: 1558-1748.
[99]? ?Epimitheas Georgitzikis, Pawel E Malinowski, Jorick Maes, et al. Optimization of Charge Carrier Extraction in Colloidal Quantum Dots Short-Wave Infrared Photodiodes through Optical Engineering[J]. Adv. Funct. Mater., 2018, 1804502: 1-8.

相似文献/References:

[1]唐利斌,段瑜,姬荣斌,等.PbS量子点的化学溶液法制备技术[J].红外技术,2008,30(二):103.
 TANG Li-bin,DUAN Yu,JI Rong-bin,et al.Preparation of PbS Quantum Dots by Chemical Solution Method[J].Infrared Technology,2008,30(5):103.
[2]詹国钟,郭方敏?,黄静,等.光电传感器读出电路的参数可调控制研究[J].红外技术,2008,30(八):485.
 ZHAN Guo-zhong,GUO Fang-min,HUANG Jing,et al.Research on Control Circuit with Tunable Parametersfor Photodetector Readout Circuit[J].Infrared Technology,2008,30(5):485.
[3]高 润,牛春晖,李晓英,等.光电探测器激光损伤判别法与发展现状[J].红外技术,2016,38(8):636.[doi:10.11846/j.issn.1001_8891.201608002]
 GAO Run,NIU Chunhui,LI Xiaoying,et al.Determination Methods and Development Status of Photoelectric Detector Damaged by Strong Laser [J].Infrared Technology,2016,38(5):636.[doi:10.11846/j.issn.1001_8891.201608002]
[4]耿蕊,张玉江,陈青山.红外PbX量子点光致发光特性研究[J].红外技术,2017,39(2):125.[doi:10.11846/j.issn.1001_8891.201702003]
 GENG Rui,ZHANG Yujiang,CHEN Qingshan.Research on Photoluminescence Characteristics of Infrared PbX Quantum Dots[J].Infrared Technology,2017,39(5):125.[doi:10.11846/j.issn.1001_8891.201702003]
[5]张玉平,唐利斌.拓扑绝缘体光电探测器研究进展[J].红外技术,2020,42(1):001.[doi:1001-8891(2020)01-0001-09]
 ZHANG Yuping,TANG Libin.Research Progress in Photodetectors Based on Topological Insulators[J].Infrared Technology,2020,42(5):001.[doi:1001-8891(2020)01-0001-09]
[6]赵逸群,唐利斌,张玉平,等.GeTe薄膜的性质、应用及其红外探测研究进展[J].红外技术,2020,42(4):301.[doi:doi:10.11846/j.issn.1001_8891.202004001]
 ZHAO Yiqun,TANG Libin,ZHANG Yuping,et al.Research Progress Regarding Properties, Applications, and Infrared Detection of GeTe Thin Films [J].Infrared Technology,2020,42(5):301.[doi:doi:10.11846/j.issn.1001_8891.202004001]

备注/Memo

备注/Memo:
收稿日期:2020-04-20;修订日期:2020-05-10.
作者简介:李汝劼(1976-),女,博士研究生,研究员级高级工程师,研究方向是光电材料与器件。
通信作者:唐利斌(1978-),男,研究员级高级工程师,博士生导师,研究方向是光电材料与器件,E-mail: scitang@163.com。
基金项目:国家重点研发计划(2019YFB2203404);云南省创新团队项目(2018HC020);中国兵器创新团队项目(2017CX024)。

更新日期/Last Update: 2020-05-19