[1]赵逸群,唐利斌,张玉平,等.GeTe薄膜的性质、应用及其红外探测研究进展[J].红外技术,2020,42(4):301-311.[doi:doi:10.11846/j.issn.1001_8891.202004001]
 ZHAO Yiqun,TANG Libin,ZHANG Yuping,et al.Research Progress Regarding Properties, Applications, and Infrared Detection of GeTe Thin Films [J].Infrared Technology,2020,42(4):301-311.[doi:doi:10.11846/j.issn.1001_8891.202004001]
点击复制

GeTe薄膜的性质、应用及其红外探测研究进展
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
42卷
期数:
2020年第4期
页码:
301-311
栏目:
出版日期:
2020-04-23

文章信息/Info

Title:
Research Progress Regarding Properties, Applications, and Infrared
Detection of GeTe Thin Films
文章编号:
1001-8891(2020)04-0301-11
作者:
赵逸群14唐利斌123张玉平23姬荣斌2杨盛谊1
1. 北京理工大学 物理学院,北京 100081;2. 昆明物理研究所,云南 昆明 650223;
3. 云南省先进光电材料与器件重点实验室,云南 昆明 650223;4. 昆明冶金高等专科学校 建筑工程学院,云南 昆明 650033
Author(s):
ZHAO Yiqun14TANG Libin123ZHANG Yuping23JI Rongbin2YANG Shengyi1
1. School of Physics, Beijing Institute of Technology, Beijing 100081, China; 2. Kunming Institute of Physics, Kunming 650223, China;
3. Yunnan Key Laboratory of Advanced Photoelectric Materials & Devices, Kunming 650223, China;
4. School of Architectural Engineering, Kunming Metallurgy College, Kunming 650033, China
关键词:
GeTe薄膜物理性质GeTe应用光电探测器
Keywords:
GeTe thin films physical properties applications of GeTe photodetectors
分类号:
O434.3
DOI:
doi:10.11846/j.issn.1001_8891.202004001
文献标志码:
A
摘要:
 GeTe基半导体的非晶态,a-GeTe相和b-GeTe相可以相互转换,且在一定条件下稳定存在。利用高浓度空穴掺杂改善GeTe热电和铁电性能,以及非晶相和晶相间的巨大差异和快速切换,使其在热电、自旋器件、相变开关、相变存储等多个领域具有很大的应用前景。此外,GeTe具有窄光学带隙和高载流子迁移率,有望用于高性能红外光电探测,然而其在红外光电探测方面还处于初始阶段。本综述在详述其性质及在热电、相变等领域应用情况的基础上,根据GeTe的光电性质,展望了其在红外光电探测领域方面的应用。
Abstract:
 The amorphous, ?a-GeTe, and ?b-GeTe phases of GeTe can be stably converted to each other under certain conditions. Because doping-based high-concentration holes can improve the thermoelectric and ferroelectric performances of GeTe, and it can be converted quickly between its amorphous and crystalline phases, GeTe has been applied to thermoelectric devices, spintronic devices, phase change switches, phase change memory, and others. Moreover, GeTe has a narrow optical band gap and high carrier mobility, which is expected to contribute positively to the development of high-performance infrared detectors. However, its application in the infrared detector field is still new. In this paper, its physical characteristics and its applications in areas including the thermoelectric, spintronic, and phase transition fields are reported. Based on its photoelectric properties, its application in the infrared detector field is expected.

参考文献/References:

[1] Snyder G J, Toberer E S. Complex thermoelectric materials[J]. Nat. Mater., 2010, 7: 101-110.
[2] Levin E M, Besser M F, Hanus R. Electronic and thermal transport in GeTe: A versatile base for thermoelectric materials[J]. J. Appl. Phys., 2013, 114(8): 083713.
[3] Bastard A, Bastien J C, Hyot B, et al. Crystallization study of “melt quenched” amorphous GeTe by transmission electron microscopy for phase change memory applications[J]. Appl. Phys. Lett., 2011, 99(24): 243103.
[4] El-Hinnawy N, Borodulin P, Wagner B, et al. A four-terminal, inline, chalcogenide phase-change RF switch using an independent resistive heater for thermal actuation[J]. IEEE Electron Device Lett., 2013, 34(10): 1313-1315.
[5] Wuttig M, Yamada N. Phase-change materials for rewriteable data storage[J]. Nat. Mater., 2007, 6: 824.
[6] ZHOU X, DONG W, ZHANG H, et al. A zero density change phase change memory material: GeTe-O structural characteristics upon crystallisation[J]. Sci. Rep., 2015, 5: 11150.
[7] Rinaldi C, Varotto S, Asa M, et al. Ferroelectric Control of the Spin Texture in GeTe[J]. Nano Lett., 2018, 18(5): 2751-2758.
[8] Fukuma Y, Nishimura N, Asada H, et al. Appearance of ferromagnetism by crystallizing ?-Ge1?xMnxTe film[J]. Physica E, 2001, 10(1-3): 268-272.
[9] Raoux S, Muñoz B, Cheng H-Y, et al. Phase transitions in Ge-Te phase change materials studied by time-resolved x-ray diffraction[J]. Appl. Phys. Lett., 2009, 95(14): 143118.
[10] Lencer D, Salinga M, Grabowski B, et al. A map for phase-change materials[J]. Nat. Mater., 2008, 7(12): 972-977.
[11] Okamoto H. Ge-Te (Germanium-Tellurium)[J]. Journal of Phase Equilibria, 2000, 21(5): 496-496.
[12] Shaltaf R, Durgun E, Raty J Y, et al. Dynamical, dielectric, and elastic properties of GeTe investigated with first-principles density functional theory[J]. Phys. Rev. B, 2008, 78(20): 205203.
[13] Giussani A, Perumal K, Hanke M, et al. On the epitaxy of germanium telluride thin films on silicon substrates[J]. Phys. Status Solidi B, 2012, 249(10): 1939-1944.
[14] Kim B S, Kim I H, Lee J K, et al. Electron transport properties of rapidly solidified(GeTe)x(AgSbTe2)1-x pseudobinary thermoelectric com- pounds[J]. Electron. Mater. Lett., 2010, 6(4): 181-185.
[15] King M R, Wagner B P, Jones E B, et al. Development of cap-free sputtered GeTe films for inline phase change switch based RF circuits[J]. J. Vac. Sci. Technol. B, 2014, 32(4): 041204.
[16] Sittner E-R, Siegert K S, Jost P, et al. (GeTe)x-(Sb2Te3)1-x phase-change thin films as potential thermoelectric materials[J]. Phys. Status Solidi A, 2013, 210(1): 147-152.
[17] Polking M J, Han M-G, Yourdkhani A, et al. Ferroelectric order in individual nanometre-scale crystals[J]. Nat. Mater., 2012, 11(8): 700-709.
[18] ZHANG W, Mazzarello R, Wuttig M, et al. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing[J]. Nat. Rev. Mater., 2019, 4(3): 150-168.
[19] Bruns G, Merkelbach P, Schlockermann C, et al. Nanosecond switching in GeTe phase change memory cells[J]. Appl. Phys. Lett., 2009, 95(4): 043108.
[20] GE Z H, ZHAO L D, WU D, et al. Low-cost, abundant binary sulfides as promising thermoelectric materials[J]. Mater. Today, 2016, 19(4): 227-239.
[21] Perumal S, Roychowdhury S, Biswas K. High performance thermoelectric materials and devices based on GeTe[J]. J. Mater. Chem. C, 2016, 4(32): 7520-7536.
[22] WANG M, Rais-Zadeh M. Development and evaluation of germanium telluride phase change material based ohmic switches for RF applications[J]. J. of Micromech. and Microeng., 2017, 27(1): 013001.
[23] GUO P, Sarangan A, Agha I. A review of germanium-antimony-telluride phase change materials for non-volatile memories and optical modulators[J]. Appl. Sci., 2019, 9(3): 530.
[24] ZHAO Y, TANG L, YANG S, et al. Infrared photodetector based on GeTe nanofilms with high performance[J]. Opt. Lett., 2020, 45(4): 1108-1111.
[25] PENG Y P, GUO Y Y, ZHANG J J. Efficient 1.8 ?m emission of a novel Tm3+ doped germanate-tellurite glass[J]. Chinese Physics Letters, 2013, 30(5): 054207.
[26] Christakudi T A, Plachkova S K, Christakudis G C. Electrical resistivity and thermoelectric power of (GeTe)1?x(Bi2Te3)x solid solutions (0≤x≤0.05) in the temperature interval from 80 to 350 K[J]. Phys. Status Solidi B, 1996, 195(1): 217-225.
[27] Hoang K, Mahanti S D, Kanatzidis M G. Impurity clustering and impurity-induced bands in PbTe-, SnTe-, and GeTe-based bulk thermoelectrics[J]. Phys. Rev. B, 2010, 81(11): 115106.
[28] Gelbstein Y, Dado B, Ben-Yehuda O, et al. Highly Efficient Ge-Rich GexPb1?xTe Thermoelectric Alloys[J]. J. Electron. Mater., 2009, 39(9): 2049-2052.
[29] LI S P, LI J Q, WANG Q B, et al. Synthesis and thermoelectric properties of the (GeTe)1?x(PbTe)x alloys[J]. Solid State Sciences, 2011, 13(2): 399-403.
[30] Lee J K, Oh M W, Kim B S, et al. Influence of Mn on crystal structure and thermoelectric properties of GeTe compounds[J]. Electron. Mater. Lett., 2014, 10(4): 813-817.
[31] Perumal S, Roychowdhury S, Biswas K. Reduction of thermal conductivity through nanostructuring enhances the thermoelectric figure of merit in Ge1?xBixTe[J]. Inorganic Chemistry Frontiers, 2016, 3(1): 125-132.
[32] Perumal S, Roychowdhury S, Negi D S, et al. High thermoelectric performance and enhanced mechanical stability of p-type Ge1?xSbxTe[J]. Chem. Mater., 2015, 27(20): 7171-7178.
[33] Gelbstein Y, Ben-Yehuda O, Pinhas E, et al. Thermoelectric properties of (Pb,Sn,Ge)Te-based alloys[J]. J. Electron. Mater., 2009, 38(7): 1478-1482.
[34] Schröder T, Rosenthal T, Giesbrecht N, et al. TAGS-related indium compounds and their thermoelectric properties-the solid solution series (GeTe)xAgInySb1?yTe2 (x=1–12; y=0.5 and 1)[J]. J. Am. Chem. Soc., 2014, 2(18): 6384-6395.
[35] Rosenthal T, Welzmiller S, Oeckler O. The solid solution series Ge12M2Te15(M=Sb, In): Nanostructures and thermoelectric properties[J]. Solid State Sciences, 2013, 25: 118-123.
[36] Salvador J R, YANG J, SHI X, et al. Transport and mechanical property evaluation of (AgSbTe)1?x(GeTe)x (x=0.80, 0.82, 0.85, 0.87, 0.90)[J]. J. Solid State Chem., 2009, 182(8): 2088-2095.
[37] CHEN Y, Jaworski C M, GAO Y B, et al. Transport properties and valence band feature of high-performance (GeTe)85(AgSbTe2)15 thermoelectric materials[J]. New J. Phys., 2014, 16(1): 013057.
[38] YANG S H, ZHU T J, SUN T, et al. Nanostructures in high-performance (GeTe)x(AgSbTe2) 1?x thermoelectric materials[J]. Nanotechnology, 2008, 19(24): 245707.
[39] Levin E M, Cook B A, Harringa J L, et al. Analysis of Ce- and Yb-Doped TAGS-85 Materials with Enhanced Thermoelectric Figure of Merit[J]. Adv. Funct. Mater., 2011, 21(3): 441-447.
[40] Levin E M, Bud’ko S L, Schmidt-Rohr K. Enhancement of thermopower of TAGS-85 high-performance thermoelectric material by doping with the rare earth Dy[J]. Adv. Funct. Mater., 2012, 22(13): 2766-2774.
[41] Sadia Y, Ohaion-Raz T, Ben-Yehuda O, et al. Criteria for extending the operation periods of thermoelectric converters based on IV-VI compounds[J]. J. Solid State Chem., 2016, 241: 79-85.
[42] Gelbstein Y, Davidow J, Girard S N, et al. Controlling metallurgical phase separation reactions of the Ge0.87Pb0.13Te alloy for high thermoelectric performance[J]. Adv. Energy Mater., 2013, 3(6): 815-820.
[43] WU D, ZHAO L D, HAO S, et al. Origin of the high performance in GeTe-based thermoelectric materials upon Bi2Te3 doping[J]. J. Am. Chem. Soc., 2014, 136(32): 11412-11419.
[44] Samanta M, Roychowdhury S, Ghatak J, et al. Ultrahigh average thermoelectric figure of merit, low lattice thermal conductivity and enhanced microhardness in nanostructured (GeTe)x(AgSbSe2)100?x[J]. Chemistry-A European Journal, 2017, 23(31): 7438-7443.
[45] Srinivasan B, Gautier R, Gucci F, et al. Impact of coinage metal insertion on the thermoelectric properties of GeTe solid-state solutions[J]. J. Phys. Chem. C, 2017, 122(1): 227-235.
[46] WU L, LI X, WANG S, et al. Resonant level-induced high thermoelectric response in indium-doped GeTe[J]. NPG Asia Materials, 2017, 9(1): e343-e343.
[47] DONG J, SUN F H, TANG H, et al. Medium-temperature thermoelectric GeTe: vacancy suppression and band structure engineering leading to high performance[J]. Energy Environ. Sci., 2019, 12(4): 1396-1403.
[48] Guttmann G M, Gertner R, Samuha S, et al. Thermoelectric and mechanical properties of Ag and Cu doped (GeTe)0.96(Bi2Te3)0.04[J]. MRS Communications, 2018, 8(3): 1292-1299.
[49] Kumar A, Vermeulen P A, Kooi B J, et al. Phase transitions of thermoelectric TAGS-85[J]. Inorg. Chem., 2017, 56(24): 15091-15100.
[50] Kim H S, Madavali B, Hong S J, et al. Effect of milling time on the microstructure and thermoelectric properties of P-type TAGS-90 alloys by HEM and SPS[J]. Int. J. Appl. Ceram. Technol., 2016, 13(2): 239-244.
[51] Aswal D K, Basu R, Singh A. Key issues in development of thermoelectric power generators: high figure-of-merit materials and their highly conducting interfaces with metallic interconnects[J]. Energy Convers. Manage., 2016, 114: 50-67.
[52] Cook B A, Chan T E, Dezsi G, et al. High-performance three-stage cascade thermoelectric devices with 20% efficiency[J]. J. Electron. Mater., 2015, 44(6): 1936-1942.
[53] LI J, WU H, WU D, et al. Extremely low thermal conductivity in thermoelectric Ge0.55Pb0.45Te solid solutions via Se substitution[J]. Chem. Mater., 2016, 28(17): 6367-6373.
[54] Singh A, Bhattacharya S, Thinaharan C, et al. Development of low resistance electrical contacts for thermoelectric devices based on n-type PbTe and p-type TAGS-85 ((AgSbTe2)0.15(GeTe)0.85)[J]. J. Phys. D, 2009, 42(1): 015502.
[55] Levin E M, Kramer M J, Schmidt-Rohr K. Local composition and carrier concentration in Pb0.7Ge0.3Te and Pb0.5Ge0.5Te alloys from 125Te NMR and microscopy[J]. J. Phys. Chem. Solids, 2014, 75(11): 1269-1276.
[56] Chua E K, SHI L P, ZHAO R, et al. Low resistance, high dynamic range reconfigurable phase change switch for radio frequency applications[J]. Appl. Phys. Lett., 2010, 97(18): 183506.
[57] Borodulin P, El-Hinnawy N, Graninger A L, et al. Operation of a latching, low-loss, wideband microwave phase-change switch below 1 K[J]. J. Low Temp. Phys., 2018, 194(3-4): 273-284.
[58] King M R, El-Hinnawy N, Salmon M, et al. Morphological analysis of GeTe in inline phase change switches[J]. J. Appl. Phys., 2015, 118(9): 094501.
[59] Shim Y, Hummel G, Rais-Zadeh M, RF switches using phase change materials[C]//International Conference on Micro Electro Mechanical Systems, 2013: 237-240.
[60] SUN X, Thelander E, Gerlach J W, et al. Crystallization kinetics of GeTe phase-change thin films grown by pulsed laser deposition[J]. J. Phys. D, 2015, 48(29): 295304.
[61] Kooi B J, Momand J. High resolution imaging of chalcogenide superlattices for data storage applications: progress and prospects[J]. Physica Status Solidi (RRL) – Rapid Research Letters, 2019, 13(4): 1800562.
[62] Navarro G, Sousa V, Persico A, et al. Material engineering of GexTe100?x compounds to improve phase-change memory performances[J]. Solid-State Electronics, 2013, 89: 93-100.
[63] REN K, ZHU M, SONG W, et al. Electrical switching properties and structural characteristics of GeSe-GeTe films[J]. Nanoscale, 2019, 11(4): 1595-1603.
[64] 宋笠. 镍铁掺杂的GeTe基磁性相变材料模拟计算研究[D]. 武汉: 华中科技大学, 2015.
SONG Li. Simulation of Ni and Fe doped GeTe-based magnetic phase change material[D]. Wuhan: Huazhong University of Science & Technology, 2015.
[65] Liebmann M, Rinaldi C, Di Sante D, et al. Giant Rashba-Type Spin Splitting in Ferroelectric GeTe(111)[J]. Adv. Mater., 2016, 28(3): 560-565.
[66] CHEN W Q, Lim S T, Sim C H, et al. Optical, magnetic, and transport behaviors of Ge1?xMnxTe ferromagnetic semiconductors grown by molecular-beam epitaxy[J]. J. Appl. Phys., 2008, 104(6): 063912.
[67] Vadkhiya L, Arora G, Rathor A, et al. Electron momentum density and band structure calculations of α- and β-GeTe[J]. Radiat. Phys. Chem., 2011, 80(12): 1316-1322.
[68] Bahl S K, Chopra K L. Amorphous versus crystalline GeTe films III. electrical properties and band structure[J]. J. Appl. Phys., 1970, 41(5): 2196-2212.
[69] Edwards A, Pineda A, Schultz P, et al. Electronic structure of intrinsic defects in crystalline germanium telluride[J]. Phys. Rev. B, 2006, 73(4): 045210.
[70] Manser J S, Christians J A, Kamat P V. Intriguing Optoelectronic Properties of Metal Halide Perovskites[J]. Chem. Rev., 2016, 116(21): 12956-13008.
[71] Kotsalas I P, Papadimitriou D, Raptis C, et al. Raman study of photostructural changes in amorphous GexSb0.4?xS0.6[J]. J. Non-Cryst. Solids, 1998, 226(1-2): 85-91.
[72] LONG M, WANG P, FANG H, et al. Progress, challenges, and opportunities for 2D material based photodetectors[J]. Adv. Funct. Mater., 2018, 29(19): 1803807.
[73] Kufer D, Nikitskiy I, Lasanta T, et al. Hybrid 2D-0D MoS2-PbS Quantum Dot Photodetectors[J]. Adv. Mater., 2015, 27(1): 176-180.
[74] ZHANG W, CHIU M-H, CHEN C H, et al. Role of metal contacts in high-performance phototransistors based on WSe2 monolayers[J]. ACS Nano, 2014, 8(8): 8653-8661.
[75] Island J O, Blanter S I, Buscema M, et al. Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors[J]. Nano Lett., 2015, 15(12): 7853-7858.
[76] FENG W, WU J B, LI X, et al. Ultrahigh photo-responsivity and detectivity in multilayer InSe nanosheets phototransistors with broadband response[J]. J. Mater. Chem. C, 2015, 3(27): 7022-7028.

备注/Memo

备注/Memo:
收稿日期:2020-03-10;修订日期:2020-04-09.
作者简介:赵逸群(1980-),男,博士研究生,研究方向是光电材料。
通信作者:唐利斌(1978-),男,研究员级高级工程师,博士生导师,主要从事光电材料与器件研究。E-mail:scitang@163.com。
基金项目:国家重点研发计划(2019YFB2203404),中国兵器创新团队项目(2017CX024)和云南省教育厅科学研究基金项目(2018JS550)。
更新日期/Last Update: 2020-04-20