[1]曾进能,李廷涛,常 乐,等.MCP输入增强膜对像增强器主要性能的影响研究[J].红外技术,2020,42(8):735-741.[doi:doi:10.11846/j.issn.1001_8891.202008005]
 ZENG Jinneng,LI Tingtao,CHANG Le,et al.Effect of MCP Input Enhancement Film on Image Intensifier Performance[J].Infrared Technology,2020,42(8):735-741.[doi:doi:10.11846/j.issn.1001_8891.202008005]
点击复制

MCP输入增强膜对像增强器主要性能的影响研究
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
42卷
期数:
2020年第8期
页码:
735-741
栏目:
出版日期:
2020-08-23

文章信息/Info

Title:
Effect of MCP Input Enhancement Film on Image Intensifier Performance
文章编号:
1001-8891(2020)08-0735-07
作者:
曾进能12李廷涛1常 乐1龚燕妮1赵伟林1赵 恒1 张 俊1褚祝军1李顺平1李晓峰1
1. 北方夜视技术股份有限公司,云南 昆明 650217;2. 微光夜视技术重点实验室,陕西 西安 710065
Author(s):
ZENG Jinneng12LI Tingtao1CHANG Le1GONG Yanni1ZHAO Weilin1ZHAO Heng1 ZHANG Jun1CHU Zhujun1LI Shunping1LI Xiaofeng1
1. North Night Vision Technology Co. Ltd, Kunming 650217, China;
2. Science and Technology on Low-light-level Night Vision Laboratory, Xi’an 710065, China
关键词:
像增强器微通道板分辨力信噪比MCP增益二次电子
Keywords:
image intensifier MCP resolution signal to noise ratio MCP electronic gain secondary electron
分类号:
O462.3
DOI:
doi:10.11846/j.issn.1001_8891.202008005
文献标志码:
A
摘要:
MCP是一种超快响应的电子倍增器,在像增强器和光电倍增管中有广泛应用。本文首先介绍了MCP输入增强膜原理,之后利用真空镀膜方法在MCP的输入端镀制了一层具有高二次电子发射系数的膜层,并通过面电阻、XPS表征了膜层特性。通过试验,对比测量了镀膜MCP和常规MCP像增强器的信噪比、MCP增益以及像增强器分辨力,测量结果表明,镀膜MCP像增强器的信噪比、MCP增益较常规MCP像增强器的信噪比、MCP增益均有提高,但像增强器分辨力有所下降。常规MCP像增强器的信噪比平均为25.27、MCP增益平均为209.5、像增强器分辨力平均为61 lp/mm,而镀膜MCP像增强器的信噪比平均为29.53、MCP增益平均为450.5、像增强器分辨力平均为54.75 lp/mm。镀膜MCP像增强器信噪比和MCP增益提高的原因是MCP输入端镀膜以后,表面二次电子发射系数提高。另外由于MCP输入端表面二次电子发射系数提高,导致镀膜MCP输入端表面散射电子数量的增加,使得镀膜MCP像增强器分辨力有所下降。
Abstract:
A microchannel plate(MCP)is a superfast response electron multiplier that is widely used in image intensifiers and photomultipliers. Herein, first, the principle of MCP input enhancement film is introduced; subsequently, a film with a high secondary electron emission coefficient is deposited on the input end of the MCP via vacuum coating, and the characteristics of the film are characterized by surface resistance and X-ray photoelectron spectroscopy(XPS). Through experiments, the signal-to-noise ratio, MCP gain, and image intensifier resolution of the coated MCP and conventional MCP image intensifier are measured. The results show that the signal-to-noise ratio of the image intensifier and the MCP gain of the coated MCP are higher than those of the conventional MCP; however, the resolution of the image intensifier is lower. For the conventional and coated MCP image intensifiers, the signal-to-noise ratios are 25.27 and 29.53, respectively; the average MCP gains are 209.5 and 450.5, respectively; the average resolutions of the image intensifier are 61 and 54.75 lp/mm, respectively. The increase in the signal-to-noise ratio of the image intensifier and MCP gain are due to the increase in the surface secondary electron emission coefficient after the MCP input is coated. In addition, owing to the increase in the secondary electron emission coefficient of the MCP input surface, the number of scattered electrons on the MCP input surface increases, thereby decreasing the resolution of the MCP image intensifier.

参考文献/References:

[1] 向世明, 倪国强. 光电子成像器件原理[M]. 北京: 国防出版社, 2006.
XIANG Shiming, NI Guoqiang. The Principle of Photoelectronic Imaging Devices[M]. Beijing: National Defense Press Industry Press, 2006.
[2] 白廷柱, 金伟其. 光电成像原理与技术[M]. 北京: 北京理工大学出版社, 2006.
BAI Tingzhu, JIN Weiqi. Principle and Technology of Photoelectric Imaging[M]. Beijing: Press of Beijing University of Technology, 2006.
[3] 李晓峰. 三代像增强器[D]. 西安: 中国科学院西安光学精密机械研究所, 2001.
LI Xiaofeng. Three Generation Image Intensifier[D]. Xi’an: Xi’an Institute of Optics and Precision Machinery, Chinese Academy of Sciences, 2001.
[4] 李晓峰, 张云昆, 许有毅, 等. 多碱光电阴极光电发射过程研究[J]. 红外技术, 2012, 34(8): 435-440.
LI Xiaofeng, ZHANG Yunkun, XU Youyi, et al. Study on photoemission process of multi-alkali cathode[J]. Infrared Technology, 2012, 34(8): 435-440.
[5] 常本康. 多碱阴极光学监控原理研究[J]. 真空科学与技术, 1994, 14(1): 41-46.
CHANG Benkang. A study of survey and control principles on optical information of multi-alkali photocathode[J]. Vacuum Science and Technology (CHINA), 1994, 14(1): 41-46.
[6] 赵恒, 常乐, 李廷涛, 等. 多碱光电阴极激活技术研究[J]. 红外技术, 2018, 40(7): 695-700.
ZHAO Heng, CHANG Le, LI Tingtao, et al. Study on Cs-O activation technology of multi-alkali photocathode[J]. Infrared Technology, 2018, 40(7): 695-700.
[7] 潘金生. 微通道板及其主要性能特征[J]. 应用光学, 2004, 25(5): 25-29.
PAN Jinsheng. Microchannel plates and its main characteristics[J]. Journal of Applied Optics, 2004, 25(5): 25-29.
[8] Joseph Ladislas Wiza. Microchannel plate detectors[J]. Nuclear Instru- ments and Methods, 1979, 162: 587-601.
[9] 郝子恒, 李相鑫, 张妮, 等. 微通道板高增益二次电子发射层制备研究[J]. 红外技术, 2018, 40(11): 1077-1080.
HAO Ziheng, LI Xiangxin, ZHANG Ni, et al. Preparation of high gain secondary electron emission layer for microchannel plate[J]. Infrared Technology, 2018, 40(11): 1077-1080.
[10] Fraser G W. The electron detection efficiency of microchannel plates[J]. Nuclear Instruments and Methods, 1983, 206: 445-449.
[11] Koichi Kanaya. Secondary electron emission form insulators[J]. Appl. Phys., 1978(11): 2425-2437.
[12] 李晨, 罗宗泰, 王多书, 等. MgO二次电子发射功能薄膜的制备方法[J]. 真空与低温, 2009, 15(4): 187-192.
LI Cheng, LUO Zongsheng, WANG Duoshu, et al. Preparation methods of MgO thin films with secondary electron emission[J]. Vacuum and Cryogenics, 2009, 15(4): 187-192.
[13] 国防科学技术工业委员会. 微通道板规范: 第3部分要求GJB 1596-93 [S]. 中华人民共和国国家军用标准, 1993.
National Defese Science Technology and Industry Commission. Specification for Microchannel Plate: Part Three Requirement GJB 1596-93[S]. Military Standards of the People’s Republic of China, 1993.
[14] 顾燕. 电子散射对微光像增强器分辨力的影响研究[D]. 南京: 南京理工大学, 2009.
GU Yan. Effect of Electron Scattering on Resolution of LLL Image Intensifier[D]. Nanjing: Nanjing University of Technology, 2009.
[15] 郭冰涛, 张卫国, 王键军, 等. 微光夜视系统光晕效应定量表征与建模方法[J]. 强激光与粒子束, 2016, 28(11): 164-169.
GUO Bingtao, ZHANG Weiguo, WANG Jianjun, et al. Modling and simulation of halo effect of night vision system[J]. High Power Laser and Particle Beams, 2016, 28(11): 164-169.
[16] 张小东, 欧阳晓平, 何军章, 等. 微通道板的增益研究[J]. 核技术, 2019, 10(42): 46-50.
ZHANG Xiaodong, OUYANG Xiaoping, HE Junzhang, et al. Gain study of microchannel plate[J]. Nuclear Techniques, 2019, 10(42): 46-50.
[17] 刘术林, 邓广绪, 严诚, 等. MCP增益与首次电子能量关系的实验研究[J]. 红外技术, 2011, 33(6): 354-365.
LIU Shulin, DENG Guangxu, YAN Cheng. Experiment research on research on relation between MCP gain and electron energy while first collision[J]. Infrared Technology, 2011, 33(6): 354-365.
[18] 杨露萍, 刘术林, 黄明举, 等. 提高微通道板对低能电子探测效率的技术途径[J]. 红外技术, 2016, 38(8): 714-718.
YANG Luping, LIU Shulin, HUANG Mingju, et al. Technical approach to improve the detective efficiency of microchannel plate for low energy electron[J]. Infrared Technology, 2016, 38(8): 714-718.
[19] 向世明. 微光像增强器信噪比理论极限问题研究[J]. 应用光学, 2008, 29(5): 724-726.
XIANG Shiming. Study on the theoretical limit of SNR of LLL image intensifier[J]. Journal of Applied Optics, 2008, 29(5): 724-726.
[20] 钱芸生, 常本康, 詹启海. 微光像增强器信噪比测试技术研究[J]. 真空科学与技术学报, 2002(5): 389-391.
QIAN Yunsheng, CHANG Benkang, ZHAN Qihai, et al. Development of signal-to-nose ratio tester for LLL image intensifier[J]. Vacuum Science and Technology, 2002(5): 389-391.

相似文献/References:

[1]郭晖,向世明,田民强. 微光夜视技术发展动态评述[J].红外技术,2013,35(02):063.
 GUO Hui,XIANG Shi-ming,TIAN Min-qiang. A Review of the Development of Low-light Night Vision Technology[J].Infrared Technology,2013,35(8):063.
[2]智强,延波,杨晔,等. 基于PLD器件的门控技术在微光像增强器中的应用[J].红外技术,2013,35(03):180.
 ZHI Qiang,YAN Bo,YANG Ye,et al. Application of Gating Technique Based on the PLD Devices in Low-light-level Image Intensifier[J].Infrared Technology,2013,35(8):180.
[3]冯刘,刘晖,张连东,等. 电子清刷对双MCP像增强器闪烁噪声的影响[J].红外技术,2013,35(05):295.
 FENG Liu,LIU Hui,ZHANG Lian-dong,et al. Influence of Electron Scrubbing on Flicker Noise of Double-MCP Image Intensifiers[J].Infrared Technology,2013,35(8):295.
[4]延波,智强,李军国,等. 基于自动门控电源的微光像增强器动态范围研究[J].红外技术,2013,35(05):300.
 YAN Bo,ZHI Qiang,LI Jun-guo,et al. Study of Image Intensifier Dynamic Range Based on Auto-gating Power Source[J].Infrared Technology,2013,35(8):300.
[5]李晓峰,石峰,冯刘.透射式GaAs光电阴极荧光谱特性研究[J].红外技术,2013,35(06):319.
 LI Xiao-feng,SHI Feng,FENG Liu.Study on Fluorescence of Transparent GaAs Cathode[J].Infrared Technology,2013,35(8):319.
[6]张洋,黄永刚,刘辉,等.阳极氧化铝微通道板研究的进展[J].红外技术,2012,34(07):427.
 ZHANG Yang,HUANG Yong-gang,LIU Hui,et al.Progress in Anodic Aluminum Oxide Microchannel Plates[J].Infrared Technology,2012,34(8):427.
[7]田金生.微光像传感器技术的最新进展[J].红外技术,2013,35(09):527.[doi:10.11846/j.issn.1001_8891.201309001]
 TIAN Jin-sheng.New Development of Low Light Level Imaging Sensor Technology[J].Infrared Technology,2013,35(8):527.[doi:10.11846/j.issn.1001_8891.201309001]
[8]田金生.微光像传感器技术的最新进展[J].红外技术,2013,35(09):527.[doi:10.11846/j.issn.1001_8891.201309001]
 TIAN Jin-sheng.New Development of Low Light Level Imaging Sensor Technology[J].Infrared Technology,2013,35(8):527.[doi:10.11846/j.issn.1001_8891.201309001]
[9]刘术林,邓广绪,严诚,等.MCP增益与首次碰撞时电子能量关系的试验研究[J].红外技术,2011,33(06):354.
 LIU Shu-lin,DENG Guang-xu,YAN Cheng,et al.Experiment Research on Relation Between MCP Gainand Electron Energy While First Collision[J].Infrared Technology,2011,33(8):354.
[10]张 洋,黄永刚,刘 辉,等.微通道板双面抛光过程材料去除特性研究[J].红外技术,2014,36(4):336.[doi:10.11846/j.issn.1001_8891.201404016]
 ZHANG Yang,HUANG Yong-gang,LIU Hui,et al.Material Removal Property in Double-sided Polishing Process for Microchannel Plates [J].Infrared Technology,2014,36(8):336.[doi:10.11846/j.issn.1001_8891.201404016]
[11]潘京生,邵爱飞,孙建宁,等.微通道板的离子反馈对像增强器性能升级的影响分析及改进途径探究[J].红外技术,2015,37(四):327.[doi:10.11846/j.issn.1001_8891.201504013]
 PAN Jing-sheng,SHAO Ai-fei,SUN Jian-ning,et al.Influence Analysis of Ion Feedback of Microchannel Plate on Image Intensifiers Performance Upgrade and Its Improvement Approach Exploration[J].Infrared Technology,2015,37(8):327.[doi:10.11846/j.issn.1001_8891.201504013]

备注/Memo

备注/Memo:
收稿日期:2020-03-27;修订日期:2020-05-13.
作者简介:曾进能(1988-),男,助理工程师,主要研究方向:真空光电器件。E-mail:zengjnnvt@163.com。
通信作者:李晓峰(1963-),男,正高级工程师,博士,主要研究方向:真空光电器件。E-mail:lxf@nvt.com.cn。
基金项目:国家自然科学基金(11535014)。
更新日期/Last Update: 2020-08-19