[1]司曙光,金睦淳,王兴超,等.“日盲”紫外微通道板型光电倍增管研究[J].红外技术,2020,42(8):722-728.[doi:doi:10.11846/j.issn.1001_8891.202008003]
 SI Shuguang,JIN Muchun,WANG Xingchao,et al. "Solar Blind" Ultraviolet Microchannel Plate Photomultiplier[J].Infrared Technology,2020,42(8):722-728.[doi:doi:10.11846/j.issn.1001_8891.202008003]
点击复制

“日盲”紫外微通道板型光电倍增管研究
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
42卷
期数:
2020年第8期
页码:
722-728
栏目:
出版日期:
2020-08-23

文章信息/Info

Title:
 "Solar Blind" Ultraviolet Microchannel Plate Photomultiplier
文章编号:
1001-8891(2020)-08-0722-07
作者:
 司曙光12金睦淳1王兴超1
1. 北方夜视技术股份有限公司南京分公司,江苏 南京 211106;2. 微光夜视技术重点实验室,陕西 西安 710065
Author(s):
 SI Shuguang12JIN Muchun1WANG Xingchao1et al.
1. Nanjing Branch, North Night Vision Technology Co., LTD., Nanjing 211106, China;
2. Science and Technology on Low-Light-Level Night Vision Laboratory, Xi’an 710065, China
关键词:
紫外光电倍增管光电阴极微通道板铟封
Keywords:
ultraviolet photomultiplier photocathode microchannel plate tube sealing
分类号:
TN152
DOI:
doi:10.11846/j.issn.1001_8891.202008003
文献标志码:
A
摘要:
“日盲”紫外光电倍增管是紫外光通信和核辐射探测的关键器件,具有高辐射灵敏度、高增益、高分辨率、低噪声等特点。因此,紫外光电倍增管一直是国内外真空器件的重要研究领域。本文从结构设计、阴极制备、微通道板和整管封接4方面介绍了北方夜视研制的“日盲”紫外光电倍增管。采用的是MgF2光窗上蒸镀有效面积为f18 mm的Cs2Te光电阴极,通过增透技术使得250 nm处的辐射灵敏度从22 mA/W提高到26.5 mA/W;利用电子光学仿真得到信号上升时间小于500 ps,TTS优于0.1 ns的结构;采用结构优化和原子沉积技术使得微通道板增益达到5×106;采用玻璃/Cr/Cu/Ag多层金属薄膜热铟封接技术,可将整管铟封合格率提升至97%。
Abstract:
A “solar blind” ultraviolet photomultiplier is a key detector for ultraviolet warning systems and ultraviolet communications. It exhibits the characteristics of high radiation sensitivity, high gain, high resolution, and low noise. Therefore, ultraviolet photomultipliers are an important research topic under vacuum devices worldwide. Herein, a “solar blind” ultraviolet photomultiplier developed by NVT is introduced from four aspects: structure design, cathode preparation, microchannel plate, and whole tube sealing. A f18 mm Cs2Te photocathode was evaporated on an MgF2 window through anti-reflection technology, which resulted in a radiation sensitivity at 250 nm increasing from 22 to 26.5 mA/W. The signal rise time is less than 500 ps, and the TTS is less than 0.1 ns; these are obtained by electron optics simulation. The gain of the microchannel plate reached 5´106 via structure optimization and atomic layer deposition technology. The indium sealing technology of glass/Cr/Cu/Ag multilayer metal film is adopted to improve the qualified rate of the entire tube sealing to 97%.

参考文献/References:

[1] 倪国强, 钟生东, 刘榴绨, 等. 自由大气紫外光学通信的研究[J]. 光学技术, 2000(4): 297-303.
NI Qiangguo, ZHONG Shengdong, LIU Liudi, et al. Study on ultraviolet communication through disengaged atmosphere[J]. Optical Technique, 2000(4): 297-303.
[2] 鲜勇, 赖水清. 日盲紫外探测技术的军事应用[J]. 直升机技术, 2016(2): 67-72.
XIAN Yong, LAI Shuiqing. Military applications of the blind ultraviolet detection technology[J]. Helicopter Technique, 2016(2): 67-72
[3] 陈薛刚, 占光. 紫外光通信的军事应用研究[J]. 国防科技, 2010, 31(3): 24-27.
CHEN Xuegang, ZHAN Guang. A study of UV communication theory and its military application[J]. National Defense Science and Technology, 2010, 31(3): 24-27.
[4] 滨松公司. 滨松光电倍增管产品手册[M/OL]. [2020-07-10]. http://www.hamamatsu.com.cn/UserFiles/DownFile/Product/R3809U-50 _ TPMH1067E.pdf.
Hamamatsu Corp. Hamamatsu Products Information[EB/OL][2020 -07-10]. http://www.hamamatsu.com.cn/UserFiles/ DownFile/ Product/ R3809U- 50_ TPMH1067E.pdf.
[5] 黄敏, 赵文锦. GDB-601型微通道板光电倍增管[J]. 光电子技术, 1995(4): 311-315.
HUANG Min, ZHAO Wenjin. GDB-601 Microchannel plate photomultiplier tube[J]. Optoelectronic Technology, 1995(4): 311-315
[6] 戴丽英, 李慧蕊, 黄敏, 等. 紫外多阳极(128×128)微通道阵列光电倍增管的研制[J]. 真空科学与技术, 2000(1): 44-48.
DAI Liying, LI Huirui, HUANG Min, et al. Development of ultraviolet multi-anode(128×128) microchannel arrays photomultiplier tube[J]. Vacuum Science and Technology, 2000(1): 44-48.
[7] 黄波. 毫米波磁控管热测方法的研究[D]. 成都: 电子科技大学, 2012.
HUANG Bo. The Research of Thermal Measurement Methods Millimeter Wave Magnetron[D]. Chengdu: University of Electronic Science and Technology of China, 2012.
[8] 李云峰. 门控分幅相机增益特性研究[D]. 重庆: 重庆大学, 2010.
LI Yunfeng. Study on Gain character of Gated Framing Camera. Chongqing: Chongqing University, 2010.
[9] 李晓峰, 姜云龙, 李靖雯, 等. Cs2Te紫外光电阴极带外光谱响应研究[J]. 红外技术, 2015, 37(12): 1068-1073.
LI Xiaofeng, JIANG Yunlong, LI Jingwen, et al. Study on spectral response beyond cut off of Cs2Te ultra violet photo cathode[J]. Infrared Technology, 2015, 37(12): 1068-1073.
[10] 李晓峰, 赵学峰, 陈其钧, 等. K2Te(Cs)日盲紫外光电阴极研究[J]. 光子学报, 2014, 43(6): 155-160.
LI Xiaofeng, ZHAO Xuefeng, CHEN Qijun, et al. Study on K2Te(Cs) solar blind ultraviolet cathode[J]. Acta Photonica Sinica, 2014, 43(6): 155-160.
[11] 百度文库. 常见增透膜材料[R/OL]. [2020-07-10]. https:// wenku. baidu.com/view/e9713aa79b89680202d8252d.html.
Baiduwenku. Common anti-reflection film materials[R/OL] [2020-07-10]. https://wenku.baidu.com/view/e9713aa79b 8968 0202 d8252d. html.
[12] 张翼. 硅微通道阵列高温氧化及整形技术研究[D]. 长春: 长春理工大学, 2015.
ZHANG Yi. High Temperature Oxidation and Shaping Technology of Silicon Microchannel Array[D]. Changchun: Changchun University of Science and Technology, 2015
[13] 丛晓庆, 邱祥彪, 孙建宁, 等. 原子层沉积法制备微通道板发射层的性能[J]. 红外与激光工程, 2016, 45(9): 224-229.
CONG Xiaoqing, QIU Xiangbiao, SUN Jianning, et al. Properties of microchannel plate emission layer deposited by atomic layer deposition[J]. Infrared and Laser Engineering, 2016, 45(9): 224-229.

相似文献/References:

[1]杨露萍,刘术林,黄明举,等.提高微通道板对低能电子探测效率的技术途径[J].红外技术,2016,38(8):714.
 YANG Luping,LIU Shulin,HUANG Mingju,et al.Technical approach to improve the detective efficiency of Microchannel Plate for[J].Infrared Technology,2016,38(8):714.
[2]田英慧,金伟其,赵志勇,等.基于反射光谱和图像的雪地伪装材料紫外检测技术研究[J].红外技术,2017,39(5):469.[doi:10.11846/j.issn.1001_8891.201705014]
 TIAN Yinghui,JIN Weiqi,ZHAO Zhiyong,et al.Research on Ultraviolet Testing Technology of Snow Camouflage Material Based on Reflection Spectrum and Image[J].Infrared Technology,2017,39(8):469.[doi:10.11846/j.issn.1001_8891.201705014]
[3]孙建宁,司曙光,王兴超,等. 一种利用反射率理论模型指导K2CsSb光电阴极的制备方法[J].红外技术,2017,39(12):1087.[doi:10.11846/j.issn.1001_8891.201612004]
 SUN Jianning,SI Shuguang,WANG Xingchao,et al.Preparation Method of K2CsSb Photocathode Using the Reflectance Theory Model [J].Infrared Technology,2017,39(8):1087.[doi:10.11846/j.issn.1001_8891.201612004]
[4]邢怀昌,许金通,李向阳.基于硅雪崩光电二极管的紫外盖革模式电路的研制[J].红外技术,2018,40(10):966.[doi:10.11846/j.issn.1001_8891.201810007]
 XING Huaichang,XU Jintong,LI Xiangyang.Development of Geiger Mode Circuit with Silicon Avalanche Photodiode for Ultraviolet Optical Communication[J].Infrared Technology,2018,40(8):966.[doi:10.11846/j.issn.1001_8891.201810007]
[5]苏德坦,李 珅,孙建宁,等.微通道板型光电倍增管分压比与能量分辨率关系研究[J].红外技术,2018,40(12):1125.[doi:10.11846/j.issn.1001_8891.201812002]
 SU Detan,LI Shen,SUN Jianning,et al.Study on the Relationship between Voltage Divider Ratio and Energy Resolution of Microchannel Plate Photomultiplier [J].Infrared Technology,2018,40(8):1125.[doi:10.11846/j.issn.1001_8891.201812002]
[6]司曙光,金真,黄国瑞,等.紫外微通道板型光电倍增管研制及性能研究[J].红外技术,2020,42(7):605.[doi:10.11846/j.issn.1001_8891.202007001]
 SI Shuguang,JIN Zhen,HUANG Guorui,et al.Study on the Performance of an Ultraviolet Microchannel Plate Photomultiplier[J].Infrared Technology,2020,42(8):605.[doi:10.11846/j.issn.1001_8891.202007001]

备注/Memo

备注/Memo:
收稿日期:2020-03-13;修订日期:2020-05-25.
作者简介:司曙光(1971-),男,研究员级高级工程师,长期从事光电器件技术研究工作。E-mail:sishuguang@126.com。
更新日期/Last Update: 2020-08-20