[1]曹菁,侯予,李家鹏,等.微型低温节流制冷器结构优化设计[J].红外技术,2020,42(9):893-898.[doi:10.11846/j.issn.1001_8891.202009012]
 CAO Jing,HOU Yu,LI Jiapeng,et al.Optimal Design of Miniature Joule-Thomson Cryocooler[J].Infrared Technology,2020,42(9):893-898.[doi:10.11846/j.issn.1001_8891.202009012]
点击复制

微型低温节流制冷器结构优化设计
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
42卷
期数:
2020年第9期
页码:
893-898
栏目:
出版日期:
2020-09-23

文章信息/Info

Title:
Optimal Design of Miniature Joule-Thomson Cryocooler
文章编号:
1001-8891(2020)09-0893-06
作者:
曹菁1侯予1李家鹏2陈军2陈双涛1陈良1
1. 西安交通大学 能源与动力工程学院;
2. 昆明物理研究所
Author(s):
CAO Jing1HOU Yu1LI Jiapeng2CHEN Jun2CHEN Shuangtao1CHEN Liang1
1.School of Energy and Power Engineering, Xi’an Jiaotong University;
2.Kunming Institute of Physics

关键词:
J-T制冷器翅片换热器数值模拟结构优化
Keywords:
Joule-Thomson cryocooler finned tube heat exchanger numerical simulation optimized structure
分类号:
TN215;TB65
DOI:
10.11846/j.issn.1001_8891.202009012
文献标志码:
A
摘要:
J-T节流制冷器被广泛应用于多种红外设备中。在有限结构内达到冷量最大化,是节流制冷器在小型化发展中面临的问题之一。本文在考虑流体物性变化和部件漏热的基础上,建立了一维稳态节流制冷器热力模型,着重对用于节流制冷器的双螺旋翅片换热器中3项结构参数(翅片的肋高、肋厚和肋间距)对换热器性能的影响进行了计算分析,并采用遗传算法对结构参数进行了优化。研究结果表明:论文所进行的数值计算与实验结果吻合较好;在给定工况和结构参数范围内,肋高和肋厚增加会导致换热器的熵产和冷端冷量都增加、肋间距增加则使换热器的熵产和冷端冷量都减少;并存在最优参数使换热器冷端冷量最大。本文所建立的计算方法为J-T节流制冷器在工程应用中的结构优化和设计提供了高效的途径。
Abstract:
The Joule–Thomson (J–T) cryocooler is widely used in a variety of infrared devices. Maximizing the cooling capacity in finite structures is one of the foremost problems in J-T cryocooler miniaturization. In this study, a one-dimensional model based on the thermodynamic properties of real gas and heat leakage of components is established. The effects of three structural parameters (fin height, fin thickness, and fin pitch) used in a helical finned tube heat exchanger on the performance of a cryocooler are calculated and optimized using a genetic algorithm. The results show that the calculated data are in good agreement with the experimental data. In the specific working conditions and structural parameters employed, an increase in fin height and fin thickness would increase the entropy production and cooling capacity of the cold end of the heat exchanger, whereas an increase in fin pitch would have the opposite effect. Optimal parameters exist for maximizing the cooling capacity of the heat exchanger in this study. The analytical method established in this study could provide a simple and effective means of optimizing and designing a J–T in engineering applications.

参考文献/References:

[1]? 陈晓屏. 微型低温制冷技术的现状和发展趋势[J]. 红外与激光工程, 2008, 37(1): 45-49.
CHEN Xiaoping. Status and trends of the cryocooler in IRFPA detector[J]. Infrared and Laser Engineering, 2008, 37(1): 45-49.
[2]? Maytal BZ. Performance of ideal flow regulated Joule-Thomson cryocooler[J]. Cryogenics, 1994, 34(9): 723-726
[3]? CHOU FC, PAI CF, CHIEN SB, et al. Preliminary experimental and numerical study of transient characteristics for a Joule-Thomson cryocooler[J]. Cryogenics, 1995, 35(5): 311-316.
[4]? XUE H, Ng KC, WANG JB. Performance evaluation of the recuperative heat exchanger in a miniature Joule=Thomson cooler[J]. Applied Thermal Engineering, 2001, 21(18): 1829-1844.
[5]? NgKC, XUE H, WANG JB. Experimental and numerical study on a miniature Joule-Thomson cooler for steady-state characteristics[J]. International Journal of Heat & Mass Transfer, 2002, 45(3): 609-618.
[6]? CHUA H T, WANG X L, TEO H Y. A numerical study of the Hampson-type miniature Joule–Thomson cryocooler[J]. International Journal of Heat & Mass Transfer, 2006, 49(3-4): 582-593.
[7]? HONG Y J, Park S J, Choi Y D. A Numerical Study on Operating Characteristics of a Miniature Joule-Thomson Refrigerator[J]. Progress in Superconductivity & Cryogenics, 2010, 12(4): 41-45.
[8]? Lerou PPPM, Veenstra T T, Burger J F, et al. Optimization of counterflow heat exchanger geometry through minimization of entropy generation[J]. Cryogenics, 2005, 45: 659-669.
[9]? Gupta P K, Kush P K, Tiwari A. Design and optimization of coil finned-tube heat exchangers for cryogenic applications[J]. Cryogenics, 2007, 47(5-6): 322-332.
[10]? CAO J, HOU Y, WANG W B, et al. Transient modeling and influence of operating parameters on thermodynamic performance of miniature Joule-Thomson cryocooler[J]. Applied Thermal Engineering, 2018(143): 1093-1100.
[11]? Timmerhaus K D, Flynn T M. Cryogenic Process Engineering[M]. New York: Plenum Press, 1989.

相似文献/References:

[1]杜冰雁.导弹用小型低温制冷机的研究进展[J].红外技术,2010,32(9):549.
 DU Bing-yan.Development of Cyocoolers for Missile[J].Infrared Technology,2010,32(9):549.

备注/Memo

备注/Memo:
收稿日期:2020-01-02;修订日期:2020-08-17.
作者简介:曹菁(1989-),女,博士研究生,研究方向:制冷及低温工程。E-mail:caojing2011@stu.xjtu.edu.cn。
通信作者:陈良(1984-),男,副教授,博导,研究方向:制冷及低温工程。E-mail:liangchen@mail.xjtu.edu.cn。
基金项目:国家自然科学基金(51706169);陕西高校青年创新团队。

更新日期/Last Update: 2020-09-21