[1]张玉平,唐利斌.拓扑绝缘体光电探测器研究进展[J].红外技术,2020,42(1):001-9.[doi:1001-8891(2020)01-0001-09]
 ZHANG Yuping,TANG Libin.Research Progress in Photodetectors Based on Topological Insulators[J].Infrared Technology,2020,42(1):001-9.[doi:1001-8891(2020)01-0001-09]
点击复制

拓扑绝缘体光电探测器研究进展
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
42卷
期数:
2020年第1期
页码:
001-9
栏目:
出版日期:
2020-01-23

文章信息/Info

Title:
Research Progress in Photodetectors Based on Topological Insulators
文章编号:
1001-8891(2020)01-0001-09
作者:
张玉平唐利斌
昆明物理研究所
Author(s):
ZHANG YupingTANG Libin
Kunming Institute of Physics
关键词:
拓扑绝缘体光电探测器材料制备
Keywords:
topological insulators photodetectors material preparation
分类号:
TN204
DOI:
1001-8891(2020)01-0001-09
文献标志码:
A
摘要:
由于拓扑绝缘体具有优异的光学和电学特性以及特殊的能带结构,使其在发展高性能的宽光谱光电探测器方面具有巨大的前景。然而由于拓扑绝缘体的发现较晚,其在光电探测器领域的研究还处于初始阶段。因而存在许多亟待解决的问题,如制备更高质量的拓扑绝缘体材料。本综述概述了拓扑绝缘体材料的发展历程,并从材料制备和材料体系的角度阐述了基于拓扑绝缘体材料的光电探测器的研究进展,并展望了拓扑绝缘体材料在光电探测器领域的发展前景。
Abstract:
Because of their excellent optical and electrical properties and the special band structure, topological insulators have great prospects in the development of high-performance broadband photodetectors. However, owing to the late discovery of topological insulators, research based on them, in the field of photodetectors, is still in its early stages. Therefore, there are several problems that need to be resolved, such as the preparation of topological insulator materials of a higher quality. This review summarizes the development of topological insulator materials and further delineates the research progress of photodetectors, based on topological insulator materials from the perspective of material preparations and material systems; furthermore, it details the prospects for the development of topological insulator materials in the field of photodetectors.

参考文献/References:

[1] Mciver J W, Hsieh D, Steinberg H, et al. Control over topological insulator photocurrents with light polarization[J]. Nature Nanotechnology, 2011, 7(2): 96-100.
[2] ZHANG X, WANG J, ZHANG S C. Topological insulators for high-performance terahertz to infrared applications[J]. Physical Review B, 2010, 82(24): 245107.
[3] TIAN Wenchao, YU Wenbo, SHI Jing, et al. The property, preparation and application of topological insulators: a review[J]. Materials, 2017, 10(7): 814.
[4] Junck A, Refael G, Von Oppen F. Photocurrent response of topological insulator surface states[J]. Physical Review B, 2013, 88(7): 075144.
[5] ZANG C, QI X, REN L, et al. Photoresponse properties of ultrathin Bi2Se3 nanosheets synthesized by hydrothermal intercalation and exfoliation route[J]. Applied Surface Science, 2014, 316: 341-347.
[6] 韦庞. 基于量子反常霍尔效应的器件的探索和研究[D]. 北京: 北京邮电大学, 2014.
WEI Pang. Exploration and research on micro-devices based on quantum anomalous hall effect[D]. Beijing: Beijing University of Posts and Telecommunications, 2014.
[7] 吴杏华. 拓扑绝缘体材料的制备及其光学性能研究[D]. 北京: 中国地质大学, 2018.
WU Xinghua. Study on the preparation and optical properties of topological insulators[D]. Beijing: China University of Geosciences, 2018.
[8]? Bernevig B A, Hughes T L, ZHANG S C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells[J]. Science, 2006, 314(5806): 1757-1761.
[9] Koenig M, Buhmann H, Molenkamp L W, et al. The quantum spin Hall effect: theory and experiment[J]. Journal of the Physical Society of Japan, 2008, 77(3): 1105-1125.
[10] LIU C, Hughes T L, QI X L, et al. Quantum spin Hall effect in inverted type-II semiconductors[J]. Physical Review Letters, 2008, 100(23): 236601.
[11] ZHANG H J, LIU C X, QI X L, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface[J]. Nature Physics, 2009, 5(6): 438-442.
[12] XUE Q K. Experimental Realization of Quantum Anomalous Hall Effect[C/OL]//Asia Communications and Photonics Conference. 2013, 59(1): http://meetings.aps.org/link/BAPS.2014.MAR.D39.2.
[13] ZHANG H B, LI H, SHAO J M, et al. High-performance Bi2Te3-based topological insulator film magnetic field detector[J]. ACS Applied Materials & Interfaces, 2013, 5(22): 11503-8.
[14] Bendt G, Zastrow S, Nielsch K, et al. Deposition of topological insulator Sb2Te3 films by an MOCVD process[J]. Journal of Materials Chemistry A, 2014, 2(22): 8215.
[15] Tanaka Y, Ren Z, Sato T, et al. Experimental realization of a topological crystalline insulator in SnTe[J]. Nature Physics, 2012, 8(11): 800-803.
[16] ZENG Z, Morgan T A, FAN D, et al. Molecular beam epitaxial growth of Bi2Te3 and Sb2Te3 topological insulators on GaAs(111) substrates: a potential route to fabricate topological insulator p-n junction[J]. AIP Advances, 2013, 3(7): 072112.
[17] CHEN X, MA X C, HE K, et al. Molecular beam epitaxial growth of topological insulators[J]. Advanced Materials, 2015, 23(9): 1162-1165.
[18] WANG Qisheng, XU Kai, WANG Zhenxin, et al. Van der waals epitaxial ultrathin two-dimensional nonlayered semiconductor for highly efficient flexible optoelectronic devices[J]. Nano Lett. , 2015, 15(2): 1183-1189.
[19] WANG Qisheng, WEN Yao, YAO Fengrui, et al. BN-enable epitaxy of Pb1?xSnxSe nanoplates on SiO2/Si for high-performance mid-infrared detection[J]. Small, 2015, 11(40): 5388-5394.
[20] ZHENG Wenshan, XIE Tian, ZHOU Yu, et al. Patterning two-dimensional chalcogenide crystals of Bi2Se3 and In2Se3 and efficient photodetectors[J]. Nat. Commun., 2015, 6(1): 6972.
[21] ZHANG H, ZHANG X, LIU C, et al. High-responsivity, high-detectivity, ultrafast topological insulator Bi2Se3/silicon heterostructure broadband photodetectors[J]. ACS Nano, 2016, 10(5): 5113-22.
[22] LIU C, ZHANG H B, SUN Z, et al. Topological insulator Bi2Se3 nanowire/Si heterostructure photodetectors with ultrahigh responsivity and broadband response[J]. Journal of Materials Chemistry C, 2016, 4(24): 5648-5655.
[23] Kim J, Park S, Jang H, et al. Highly sensitive, gate-tunable, room -temperature mid-infrared photodetection based on grapheme -Bi2Se3 heterostructure[J]. ACS Photonics, 2017, 4(3): 482-488.
[24] SONG J C, YUAN J, XIA F, et al. Large-scale production of bismuth chalcogenide and graphene heterostructure and its application for flexible broadband photodetector[J]. Adv. Mater., 2016, 2(5): 1600077.
[25] Sharma A, Bhattacharyya B, Srivastava A K, et al. High performance broadband photodetector using fabricated nanowires of bismuth selenide[J]. Scientific Reports, 2016, 6(1): 19138.
[26] Das B, Das N S, Sarkar S, et al. Topological insulator Bi2Se3/Si- nanowire-based p-n junction diode for high-performance near-infrared photodetector[J]. ACS Applied Materials & Interfaces, 2017, 9(27): 22788-98.
[27] QIAO H, YUAN J, XU Z, et al. Broadband photodetector based on graphene-Bi2Te3 heterostructure[J]. ACS Nano, 2015, 9(2): 1866-1894.
[28] LIU J, LI Y, SONG Y, et al. Bi2Te3 photoconductive detectors on Si[J]. Applied Physics Letters, 2017, 110(14): 141109.
[29] YAO J, SHAO J, WANG Y, et al. Ultra-broadband and high response of the Bi2Te3-Si heterojunction and its application as a photodetector at room temperature in harsh working environments[J]. Nanoscale, 2015, 7(29): 12535-41.
[30] YAO J, ZHENG Z, YANG G. Layered-material WS2/topological insulator Bi2Te3 heterostructure photodetector with ultrahigh responsivity in the range from 370 to 1550 nm [J]. Journal of Materials Chemistry C, 2016, 4(33): 7831-40.
[31] ZHANG H, MAN B, ZHANG Q. Topological crystalline insulator SnTe/Si vertical heterostructure photodetectors for high-performance near-infrared detection[J]. ACS Applied Materials & Interfaces, 2017, 9(16): 14067-77.
[32] GU S H, DING K, PAN J, et al. Self-driven, broadband and ultrafast photovoltaic detectors based on topological crystalline insulator SnTe/Si heterostructures[J]. Journal of Materials Chemistry A, 2017, 5: 11171-11178.
[33] JIANG T, ZANG Y, SUN H, et al. Broadband high-responsivity photodetectors based on large-scale topological crystalline insulator SnTe ultrathin film grown by molecular beam epitaxy[J]. Advanced Optical Materials, 2017, 5(5): 1600727.
[34] ZHENG K, LUO L B, ZHANG T F, et al. Optoelectronic characteristics of a near infrared light photodetector based on a topological insulator Sb2Te3 film[J]. Journal of Materials Chemistry C, 2015, 3(35): 9154-60.
[35] SUN H, JIANG T, ZANG Y, et al. Broadband ultrafast photovoltaic detectors based on large-scale topological insulator Sb2Te3/STO heterostructures[J]. Nanoscale, 2017, 9(27): 9325-32.
[36] JIANG Y, SUN Y, CHEN M, et al. Fermi-level tuning of epitaxial Sb2Te3 thin films on graphene by regulating intrinsic defects and substrate transfer doping[J]. Physical Review Letters, 2012, 108(6): 066809.
[37] WANG F, LI L, HUANG W, et al. Submillimeter 2D Bi2Se3 flakes toward high-performance infrared photodetection at optical communication wavelength[J]. Advanced Functional Materials, 2018, 28(33): 1802707.
[38] WANG X, DAI G, LIU B, et al. Broadband photodetectors based on topological insulator Bi2Se3 nanowire with enhanced performance by strain modulation effect[J]. Physica E: Low-dimensional Systems and Nanostructures, 2019, 114: 113620.
[39] Sharma A, Srivastava A K, Senguttuvan T D, et al. Robust broad spectral photodetection(UV-NIR) and ultra-high responsivity investigated in nanosheets and nanowires of Bi2Te3 under harsh nano-milling conditions [J]. Scientific reports, 2017, 7(1): 17911.
[40] WANG Z, LI M, YANG L, et al. Broadband photovoltaic effect of n-type topological insulator Bi2Te3 films on p-type Si substrates[J]. Nano Research, 2016, 10(6): 1872-9.
[41] HUANG S M, HUANG S J, YAN Y J, et al. Highly responsive photoconductance in a Sb2SeTe2 topological insulator nanosheet at room temperature[J]. RSC Advances, 2017, 7(62): 39057-62.
[42] HUANG S M, HUANG S J, YAN Y J, et al. Extremely high -performance visible light photodetector in the Sb2SeTe2 nanoflake[J]. Scientific Reports, 2017, 7: 45413.
[43] YANG JIE, YANG Wenzhi, PENG Zhenghui, et al. Ultra-broadband flexible photodetector based on topological crystalline insulator SnTe with high responsivity[J]. Small, 2018, 14(37): 1802598.
[44] Virot F, Hayn R, Richter M, et al. -HgS): a strong 3D topological insulator with highly anisotropic surface states[J]. Physical Review Letters, 2011, 106(23): 236806.
[45] MA J, YI C, LV B, et al. Experimental evidence of hourglass fermion in the candidate nonsymmorphic topological insulator KHgSb[J]. Science Advances, 2017, 3(5): e1602415.
[46] Chandra Shekhar, Siham Ouardi, Gerhard H Fecher, et al. Electronic structure and linear magnetoresistance of the gapless topological insulator PtLuSb[J]. Applied Physics Letters, 2012, 100(25): 252109.
[47] Maier L, Oostinga J B, Knott D, et al. Induced superconductivity in the three-dimensional topological insulator HgTe[J]. Physical Review Letters, 2012, 109(18): 186806.
[48] Nayak J, Kumar N, WU S C, et al. Electronic properties of topological insulator candidate CaAgAs[J]. Journal of Physics: Condensed Matter, 2017, 30(4): 045501.
[49] Lawal A, Shaari A, Ahmed R, et al. Investigation of excitonic states effects on optoelectronic properties of Sb2Se3, crystal for broadband photo-detector by highly accurate first-principles approach[J]. Current Applied Physics, 2018, 18(5): 567-575.
[50] Seifert P, Vaklinova K, Kern K, et al. Surface state-dominated photoconduction and THz generation in topological Bi2Te2Se nanowires[J]. Nano Letters, 2017, 17(2): 973-979.

相似文献/References:

[1]詹国钟,郭方敏?,黄静,等.光电传感器读出电路的参数可调控制研究[J].红外技术,2008,30(八):485.
 ZHAN Guo-zhong,GUO Fang-min,HUANG Jing,et al.Research on Control Circuit with Tunable Parametersfor Photodetector Readout Circuit[J].Infrared Technology,2008,30(1):485.
[2]高 润,牛春晖,李晓英,等.光电探测器激光损伤判别法与发展现状[J].红外技术,2016,38(8):636.[doi:10.11846/j.issn.1001_8891.201608002]
 GAO Run,NIU Chunhui,LI Xiaoying,et al.Determination Methods and Development Status of Photoelectric Detector Damaged by Strong Laser [J].Infrared Technology,2016,38(1):636.[doi:10.11846/j.issn.1001_8891.201608002]

备注/Memo

备注/Memo:
收稿日期:2019-12-15;修订日期:2020-01-10.
作者简介:张玉平(1993-),男,硕士,研究方向是光电材料。
通信作者:唐利斌(1978-),男,研究员级高级工程师,博士生导师,主要从事光电材料与器件研究。E-mail:scitang@163.com。

更新日期/Last Update: 2020-01-20