[1]闫 磊,石 峰,单 聪,等.铝镓氮光阴极像增强器极限分辨力影响因素研究[J].红外技术,2020,42(8):729-734.[doi:doi:10.11846/j.issn.1001_8891.202008004]
 YAN Lei,SHI Feng,SHAN Cong,et al.Limiting Resolution of AlGaN Photocathode Image Intensifier Tube[J].Infrared Technology,2020,42(8):729-734.[doi:doi:10.11846/j.issn.1001_8891.202008004]
点击复制

铝镓氮光阴极像增强器极限分辨力影响因素研究
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
42卷
期数:
2020年第8期
页码:
729-734
栏目:
出版日期:
2020-08-23

文章信息/Info

Title:
Limiting Resolution of AlGaN Photocathode Image Intensifier Tube
文章编号:
1001-8891(2020)-08-0729-06
作者:
闫 磊12石 峰12单 聪3程宏昌12郭 欣12刘 晖12罗 洋12张晓辉12
1. 微光夜视技术重点实验室,陕西 西安 710065;2. 昆明物理研究所,云南 昆明 650223;
3. 陆军装备部驻西安地区军代局驻西安地区第八军事代表室,陕西 西安 710065
Author(s):
YAN Lei12SHI Feng12SHAN Cong3CHENG Hongchang12GUO Xin12 LIU Hui12LUO Yang12ZHANG Xiaohui12
1. Science and Technology on Low-Light-Level Night Vision Laboratory, Xi’an 710065, China;
2. Kunming Institute of Physics, Kunming 650223, China;
3. No.8 Military Representative Office of PLA Army Armaments Department, Xi’an 710065, China
关键词:
极限分辨力铝镓氮光阴极像增强器
Keywords:
limiting resolution AlGaN photocathode image intensifier
分类号:
TN144
DOI:
doi:10.11846/j.issn.1001_8891.202008004
文献标志码:
A
摘要:
针对铝镓氮光阴极像增强器极限分辨力远小于同结构类型砷化镓光阴极像增强器极限分辨力的问题,基于紫外光激发荧光粉发光的特性,搭建了铝镓氮光阴极的紫外光传输特性评测装置,对铝镓氮光阴极紫外光传输特性进行了测量,并依据非衍射光学系统传函方程推算了铝镓氮光阴极的紫外光学传递函数;依据近贴聚焦系统调制传递函数方程,并基于制备的铝镓氮光阴极像增强器的分辨力测试数据,推导了铝镓氮光阴极像增强器的前近贴聚焦系统调制传递函数方程;通过对比研究铝镓氮光阴极的紫外光调制传递函数方程和铝镓氮光阴极像增强管的前近贴聚焦系统调制传递函数方程对系统传函影响的比例权重,提出紫外光在铝镓氮光阴极内部传输时紫外光散射,以及紫外光激发载流子在铝镓氮激活层中的散射和发射电子散射均是造成铝镓氮光阴极像增强管极限分辨力低的因素,且紫外光激发载流子在铝镓氮激活层中的散射和发射电子散射是最主要的影响因素。
Abstract:
The limiting resolution of an AlGaN photocathode image intensifier tube is much less than the limiting resolution of a GaAs photocathode image intensifier tube; thus, based on the effect of ultraviolet fluorescence, we calculate the limit resolution of an AlGaN photocathode and promote its ultraviolet modulation transfer function. According to the proximity focus system modulation transfer function and the test result of the custom developed AlGaN photocathode image intensifier, the resolution model of the AlGaN photocathode image intensifier is established. By comparing the ultraviolet modulation transfer function with the proximity focus system modulation transfer function, we discovered that the ultraviolet and photoelectron transmission in an AlGaN photocathode can reduce the limiting resolution of the AlGaN photocathode image intensifier tube and that the main reason affecting the limiting resolution of the AlGaN photocathode image intensifier tube is the photoelectron transmission and the scatter in the AlGaN photocathode.

参考文献/References:

[1] 许强. 军用紫外探测技术及应用[M]. 北京: 北京航空航天大学出版社, 2010.
XU Qiang. Military Ultraviolet Detection Technology and Its Application[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2010.
[2] 石峰, 程宏昌, 闫磊. 紫外探测器技术[M]. 北京: 国防工业出版社, 2017.
SHI Feng, CHENG Hongchang, YAN Lei. UV Detection Technique[M]. Beijing: National Defence Industrial Press, 2017.
[3] 付小倩, 常本康, 李飙, 等. 负电子亲和势GaN光电阴极的研究进展[J]. 物理学报, 2011, 60(3): 038503.
FU Xiaoqing, CHANG Benkang, LI Biao, et al. Progress of negative electron affinity GaN photocathode[J]. Acta Phys. Sin., 2011, 60(3): 038503.
[4] 李飙, 常本康, 徐源, 等. GaN光电阴极的研究及其发展[J]. 物理学报, 2011, 60(8): 088503.
LI Biao, CHANG Benkang, XU Yuan, et al. Research and development of GaN photocathode[J]. Acta Phys. Sin., 2011, 60(8): 088503..
[5] 李慧蕊, 申屠军, 戴丽英, 等. 负电子亲和势氮化镓光电阴极[J]. 光电子技术, 2007, 27(2): 73-77
LI Huirui, SHEN Tujun, DAI Liying, et al. GaN based negative electron affinity photocathode[J]. Optoelectronic Technology, 2007, 27(2): 73-77.
[6] 乔建良, 牛军, 杨智, 等. NEA GaN光电阴极表面模型研究[J]. 光学技术, 2009, 35(1): 145-147.
QIAO Jianliang, NIU Jun, YANG Zhi, et al. Study of NEA GaN photocathode surface model[J]. Optical Technique, 2009, 35(1):145-147.
[7] 曾正清, 李朝木, 王宝林, 等. GaN负电子亲和势光电阴极的激活改进研究[J]. 真空与低温, 2010, 16(2): 108-112.
ZENG Zhengqing, LI Chaomu, WANG Baolin, et al. Investigation improvement activation of GaN negative electron affinity photocathodes[J]. Vacuum and Cryogenics, 2010, 16(2): 108-112.
[8] 程耀进, 向世明, 师宏立. 三代微光像增强器分辨力计算理论模型[J]. 应用光学, 2007, 28(5): 578-581
CHENG Yaojin, XIANG Shimin, SHI Hongli. Theoretical model for resolution calculation of third generation image intensifiers[J]. Journal of Applied Optics, 2007, 28(5): 578-581.
[9] 任玲. GaAs光电阴极及像增强器的分辨力研究[D]. 南京: 南京理工大学, 2013.
REN Ling. Research on the Resolution of GaAs Photocathode and Image Intensifier[D]. Nanjing: Nanjing University of Science & Technology, 2013.
[10] 向世明, 倪国强. 光电子成像器件原理[M]. 北京: 国防工业出版社, 1999.
XIANG Shiming, NI Guoqiang. Principle of Optoelectronic Imaging Device[M]. Beijing: National Defence Industrial Press, 1999.
[11] 邹异松, 刘玉凤, 白廷柱. 光电成像原理[M]. 北京: 北京理工大学出版社, 1997.
ZOU Yisong, LIU Yufeng, BAI Tingzhu. Principle of Photoelectric Imaging[M]. Beijing: Beijing Institute of Technology Press, 1997.
[12] 李朝木, 曾正清, 陈群霞, 等. GaN负电子亲和势光电阴极材料的生长研究[J]. 真空与低温, 2008, 14(4): 236-239.
LI Chaomu, ZENG Zhengqing, CHEN Qunxia, et al. Investigation growth of GaN negative electron affinity photocathodes material[J]. Vacuum and Cryogenics, 2008, 14(4): 236-239.

备注/Memo

备注/Memo:
收稿日期:2019-12-19;修订日期:2020-01-17.
作者简介:闫磊(1986-),男,高级工程师,硕士研究生,主要从事微光像增强器技术研究。E-mail:13572495775@163.com。
更新日期/Last Update: 2020-08-19