[1]曾靓妮,邓方阁.红外热成像在乳腺疾病检测的应用研究[J].红外技术,2020,42(5):501-505.[doi:10.11846/j.issn.1001_8891.202005014]
 ZENG Jingni,DENG Fangge.Application of Infrared Thermal Imaging in Breast Disease Detection[J].Infrared Technology,2020,42(5):501-505.[doi:10.11846/j.issn.1001_8891.202005014]
点击复制

红外热成像在乳腺疾病检测的应用研究
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
42卷
期数:
2020年第5期
页码:
501-505
栏目:
出版日期:
2020-05-23

文章信息/Info

Title:
Application of Infrared Thermal Imaging in Breast Disease Detection
文章编号:
1001-8891(2020)05-0501-05
作者:
曾靓妮邓方阁
广州医科大学附属第一医院广州呼吸健康研究院呼吸疾病国家重点实验室国家呼吸系统疾病临床医学研究中心

Author(s):
ZENG JingniDENG Fangge
National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University
关键词:
红外热成像乳腺疾病早期发现预后评估
Keywords:
infrared thermal imaging breast disease earlydetection prognosis evaluation
分类号:
R445.7;R737.9
DOI:
10.11846/j.issn.1001_8891.202005014
文献标志码:
A
摘要:
乳腺疾病已严重危害女性身心健康,其中乳腺癌更位居全球范围内女性癌症发病率和死亡率首位,因此乳腺癌的早期发现意义重大。传统结构影像学早期检测疾病具有一定局限性,而红外热成像作为功能成像技术可为乳腺癌的早期筛查提供有效线索。因此本文主要就红外热成像在乳腺疾病的早期检测及预后评估的应用价值进行综述。
Abstract:
Breast diseases are a threat to the physical and mental health of women. The occurrence of breast cancer and mortality resulting from it ranks the highest among cancer cases in women. Hence, early detection and diagnosis of breast cancer becomes extremely important. Traditional structural imaging has some limitations in early detection of diseases, while infrared thermal imaging, as a functional imaging technology, can provide effective clues for early screening of breast cancer. This work mainly reviews the usefulness of employing infrared thermal imaging in the early detection and prognosis evaluation of breast diseases.

参考文献/References:


参考文献:
[1] 师金, 梁迪, 李道娟, 等. 全球女性乳腺癌流行情况研究[J]. 中国肿瘤, 2017, 26(9): 683-690.
SHI Jin, LIANG Di, LI Daojuan, et al. Epidemiological Status of Global Female Breast Cancer[J]. China Cancer, 2017, 26(9): 683-690.
[2] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.
[3] Lahiri B B, Bagavathiappan S, Jayakumar T, et al. Medical applications of infrared thermography: a review[J]. Infrared Physics & Technology, 2012, 55(4): 221-235.
[4] Figueiredo A, Do N J, Malheiros F C, et al. Breast tumor localization using skin surface temperatures from a 2D anatomic model without knowledge of the thermophysical properties[J]. Computer Methods and Programs in Biomedicine, 2019, 172: 65-77.
[5] Alikhassi A, Hamidpour S F, Firouzmand M, et al. Prospective comparative study assessing role of ultrasound versus thermography in breast cancer detection[J]. Breast Disease, 2018, 37(4): 191-196.
[6] De Jesus G R, Oliveira L L V M, Das N L, et al. Accuracy and Reliability of Infrared Thermography in Assessment of the Breasts of Women Affected by Cancer[J]. J Med Syst, 2017, 41(5): 87.
[7] Milosevic M, Jankovic D, Milenkovic A, et al. Early diagnosis and detection of breast cancer[J]. Technology and Health Care, 2018, 26(4): 729-759.
[8] Zare I, Ghafarpour A, Zadeh H G, et al. Evaluating the thermal imaging system in detecting certain types of breast tissue masses[J]. Biomedical Research-India, 2016, 27(3): 670-675.
[9] Zadeh H G, Haddadnia J, Ahmadinejad N, et al. Assessing the potential of thermal imaging in recognition of breast cancer[J]. Asian Pac J Cancer Prev, 2015, 16(18): 8619-8623.
[10] LAWSON R. Implications of surface temperatures in the diagnosis of breast cancer[J]. Can Med Assoc J, 1956, 75(4): 309-311.
[11] Lawson R N, Chughtai M S. Breast Cancer and Body Temperature[J]. Can Med Assoc J, 1963, 88(2): 68-70.
[12] Gautherie M. Thermobiological assessment of benign and malignant breast diseases[J]. American Journal of Obstetrics and Gynecology, 1983, 147(8): 861-869.
[13] Amalric R, Giraud D, Altschuler C, et al. Does infrared thermography truely have a role in present day breast cancer management?[J]. Biomed Thermology, 1982, 107: 269-278.
[14] Ng E Y, Ung L N, Ng F C, et al. Statistical analysis of healthy and malignant breast thermography[J]. J Med Eng Technology, 2001, 25(6): 253-263.
[15] Prasad S S, Ramachandra L, Kumar V, et al. Evaluation of efficacy of thermographic breast imaging in breast cancer: A pilot study[J]. Breast Disease, 2016, 36(4): 143-147.
[16] Umadevi V, Raghavan S V, Jaipurkar S. Framework for estimating tumour parameters using thermal imaging[J]. The Indian Journal of Medical Research, 2011, 134(5): 725.
[17] Rassiwala M, Mathur P, Mathur R, et al. Evaluation of digital infra-red thermal imaging as an adjunctive screening method for breast carcinoma: A pilot study[J]. International Journal of Surgery, 2014, 12(12): 1439-1443.
[18] Sarigoz T, Ertan T, Topuz O, et al. Role of digital infrared thermal imaging in the diagnosis of breast mass: A pilot study Diagnosis of breast mass by thermography[J]. Infrared Physics & Technology, 2018, 91: 214-219.
[19] Morales-Cervantes A, Kolosovas-Machuca E S, Guevara E, et al. An automated method for the evaluation of breast cancer using infrared thermography[J]. EXCLI journal, 2018, 17: 989-998.
[20] Ekici S, Jawzal H. Breast Cancer Diagnosis Using Thermography and Convolutional Neural Networks[J]. Medical Hypotheses, 2020, 137: 109542.
[21] YAO X, WEI W, LI J, et al. A comparison of mammography, ultrasonography, and far-infrared thermography with pathological results in screening and early diagnosis of breast cancer[J]. Asian Biomedicine, 2014, 8(1): 11-19.
[22] Omranipour R, Kazemian A, Alipour S, et al. Comparison of the Accuracy of Thermography and Mammography in the Detection of Breast Cancer[J]. BREAST CARE, 2016, 11(4): 260-264.
[23] Kolari? D, Herceg ?, Nola I A, et al. Thermography–a feasible method for screening breast cancer?[J]. Collegium Antropologicum, 2013, 37(2): 583-588.
[24] Vreugdenburg T D, Willis C D, Mundy L, et al. A systematic review of elastography, electrical impedance scanning, and digital infrared thermography for breast cancer screening and diagnosis[J]. Breast Cancer Research and Treatment, 2013, 137(3): 665-676.
[25] Sajjadi H S, Seyedin H, Aryankhesal A, et al. A systematic review on the effectiveness of thermography in diagnosis of diseases[J]. International Journal of Imaging Systems and Technology, 2013, 23(2): 188-193.
[26] WANG J, Shih T T, Yen R, et al. The Association of Infrared Imaging Findings of the Breast with Hormone Receptor and Human Epidermal Growth Factor Receptor 2 Status of Breast Cancer[J]. Academic Radiology, 2011, 18(2): 212-219.
[27] Zore Z, Boras I, Stanec M, et al. Influence of hormonal status on thermography findings in breast cancer[J]. Acta Clin Croat, 2013, 52(1): 35-42.
[28] Zore Z, Filipovi?-Zore I, Stanec M, et al. Association of clinical, histopathological and immunohistochemical prognostic factors of invasive breast tumors and thermographic findings[J]. Infrared Physics and Technology, 2015, 68: 201-205.
[29] Zvonimir Z, Ivanka B, Irina F, et al. The impact of human epidermal growth factor receptor-2 status of invasive breast tumors on thermography findings[J]. Saudi Med J, 2012, 33(10): 1118-1121.
[30] Mance M, Bulic K, Antabak A, et al. The influence of size, depth and histologic characteristics of invasive ductal breast carcinoma on thermographic properties of the breast[J]. EXCLI Journal, 2019, 18: 549.
[31] Sterns E E, Zee B, SenGupta S, et al. Thermography. Its relation to pathologic characteristics, vascularity, proliferation rate, and survival of patients with invasive ductal carcinoma of the breast.[J]. Cancer, 1996, 77(7): 1324-1328.
[32] Head J F, Wang F, Elliott R L. Breast thermography is a noninvasive prognostic procedure that predicts tumor growth rate in breast cancer patients[J]. Annals of the New York Academy of Sciences, 1993, 698: 153-158.
[33] Ohsumi S, Takashima S, Aogi K, et al. Prognostic Value of Thermographical Findings in Patients with Primary Breast Cancer[J]. Breast Cancer Research and Treatment, 2002, 74(3): 213-220.
[34] ZHOU Y, Herman C. Optimization of skin cooling by computational modeling for early thermographic detection of breast cancer[J]. International Journal of Heat and Mass Transfer, 2018, 126: 864-876.
[35] Gonzalez F J. Infrared imager requirements for breast cancer detection[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007: 3312-3314.
[36] JIANG L, ZHAN W, Loew M. Combined thermal and elastic modeling of the normal and tumorous breast[C]//Proc. SPIE, 2008: 6916.
[37] Kandlikar S G, Perez-Raya I, Raghupathi P A, et al. Infrared imaging technology for breast cancer detection – Current status, protocols and new directions[J]. International Journal of Heat and Mass Transfer, 2017, 108: 2303-2320.
[38] Yahara T, Koga T, Yoshida S, et al. Relationship between microvessel density and thermographic hot areas in breast cancer[J]. Surgery Today, 2003, 33(4): 243-248.

相似文献/References:

[1]曾戈虹.红外系统噪声等效温差机理分析与实例计算[J].红外技术,2012,34(02):063.
 ZENG Ge-hong.Principles of Infrared Systems’ NEDT and Theoretical Calculations[J].Infrared Technology,2012,34(5):063.
[2]赵璟媛,王黎明,刘宾.基于SVD算法的红外序列图像增强技术研究[J].红外技术,2009,31(1):047.
 ZHAO Jing-yuan,WANG Li-ming,LIU Bin.The Research of Infrared Image Sequence Enhancement Based on SVD Algorithm[J].Infrared Technology,2009,31(5):047.
[3]赵景媛,王黎明,刘宾.铸件内部缺陷红外无损检测的有限元模拟及分析[J].红外技术,2008,30(七):429.
 ZHAO Jing-yuan,WANG Li-ming,LIU Bin.The Finite Element Simulation and Analysis of the Infrared NDT forInner Defects in Casting Product[J].Infrared Technology,2008,30(5):429.
[4]谢启明,杨 静,徐 放,等.金属非球面反射镜的加工和检测技术[J].红外技术,2015,37(二):119.[doi:10.11846/j.issn.1001_8891.201502007]
 XIE Qi-ming,YANG Jing,XU Fang,et al.Manufacturing and Test Technology for Metal Aspherical Reflector[J].Infrared Technology,2015,37(5):119.[doi:10.11846/j.issn.1001_8891.201502007]
[5]张立山,蒋正文,李文生,等.红外热成像组合检测系统的开发与应用[J].红外技术,2007,29(11):677.
 ZHANG Li-shan,JIANG Zheng-wen,LI Wen-sheng,et al.Development and Application of Combinatorial Detective System?Using IR Thermograph Imaging Technology[J].Infrared Technology,2007,29(5):677.
[6]张立山,蒋正文,李文生,等.红外热成像组合化学分析系统的开发与应用[J].红外技术,2007,29(12):683.
 ZHANG Li-shan,JIANG Zheng-wen,LI Wen-sheng,et al.The Development and Application of A Synthetic IR Thermal Imaging Analysis System [J].Infrared Technology,2007,29(5):683.
[7]陆剑鸣,蔡毅,黄晖.俄罗斯红外热成像技术的现状、特点、发展趋势及不足之处[J].红外技术,2006,28(2):068.
 LU Jian-ming,CAI Yi,HUANG Hui.Status、Features and Trends of Infrared Imaging Technology in Russia[J].Infrared Technology,2006,28(5):068.
[8]何 恒,白廷柱.红外热成像系统作用距离预测方程计算误差探析[J].红外技术,2015,37(九):713.[doi:10.11846/j.issn.1001_8891.201509001]
 HE Heng,BAI Ting-zhu.Calculation Error Analysis of the Distance Equation for Infrared Imaging System[J].Infrared Technology,2015,37(5):713.[doi:10.11846/j.issn.1001_8891.201509001]
[9]赵仁涛,张 雨,铁 军,等.红外热成像技术在铜电解电流分布测量中的应用[J].红外技术,2015,37(十一):981.[doi:10.11846/j.issn.1001_8891.201511015]
 ZHAO Ren-tao,ZHANG Yu,TIE Jun,et al.The Application of Infrared Thermography in the Current-distribution Measurement of Copper Electrolysis[J].Infrared Technology,2015,37(5):981.[doi:10.11846/j.issn.1001_8891.201511015]
[10]蒋奋强,何先,陈南,等.车载红外热成像图像处理系统的设计与实现[J].红外技术,2017,39(5):389.[doi:10.11846/j.issn.1001_8891.201705001]
 JIANG Fenqiang,HE Xiandeng,CHEN Nan,et al.Design and Implementation of a Vehicle Infrared Image Processing System[J].Infrared Technology,2017,39(5):389.[doi:10.11846/j.issn.1001_8891.201705001]

备注/Memo

备注/Memo:
收稿日期:2019-12-17;修订日期:2020-05-01.
作者简介:曾靓妮(1993-),女,湖南省邵阳市人,硕士研究生,主要从事超声诊断及红外热成像临床应用,E-mail:1197141269@qq.com。
通信作者:邓方阁(1971-),女,博士后,教授,主要从事红外热成像与临床应用,E-mail:parisdeng256@163.com。

更新日期/Last Update: 2020-05-19