[1]王施鳗,许文海,董丽丽,等.基于改进的Harris角点的机载红外图像电子稳像[J].红外技术,2020,42(6):573-579.[doi:10.11846/j.issn.1001_8891.202006010]
 WANG Shiman,XU Wenhai,DONG Lili,et al.Electronic Image Stabilization of Airborne Infrared Images Based on Improved Harris Corner Detection [J].Infrared Technology,2020,42(6):573-579.[doi:10.11846/j.issn.1001_8891.202006010]
点击复制

基于改进的Harris角点的机载红外图像电子稳像
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
42卷
期数:
2020年第6期
页码:
573-579
栏目:
出版日期:
2020-06-23

文章信息/Info

Title:
Electronic Image Stabilization of Airborne Infrared Images
Based on Improved Harris Corner Detection
文章编号:
1001-8891(2020)06-0573-07
作者:
王施鳗许文海董丽丽徐 周
大连海事大学 信息科学技术学院,辽宁 大连 116026
Author(s):
WANG ShimanXU WenhaiDONG LiliXU Zhou
School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
关键词:
电子稳像机载红外稳像Harris角点检测距离约束条件
Keywords:
electronic image stabilization airborne infrared image Harris corner detection distance constraint
分类号:
TP751
DOI:
10.11846/j.issn.1001_8891.202006010
文献标志码:
A
摘要:
飞机飞行过程中产生的颠簸、晃动会使得采集到的红外图像序列存在抖动,影响后续对红外图像的观察,不利于对红外图像目标的识别、定位与跟踪。本文提出了一种基于改进的Harris角点法对机载红外图像进行实时电子稳像的方法。首先采用改进的Harris角点响应函数结合距离约束条件进行角点检测,该方法保证即使对图像质量较差的红外图像,也能检测出数量足够且分布均匀的角点;然后基于检测出的角点利用提出的关键帧参考方式结合多尺度的金字塔光流算法进行跟踪匹配,完成运动估计,进而实现对机载红外图像的电子稳像。用该方法对多组含有抖动的640×512尺寸的红外图像序列进行稳像处理,实验表明,本文提出的算法与传统的Harris角点检测算法相比有更好的检测效果,能够很好地去除红外机载图像序列的抖动,且能够满足50 fps采集速率下的实时处理。
Abstract:
 Bumps and sloshing generated during aircraft flights disrupt the capture of a sequence of infrared images. This affects the subsequent observation of the images, as well as the identification, location, and tracking of the target. In this paper, a method for real-time electronic image stabilization of airborne infrared images is proposed based on an improved Harris corner method. First, an improved Harris corner response function was combined with a distance constraint to perform corner detection. This method ensures that a sufficient number of corner points with uniform distribution can be detected, even for infrared images with poor image quality. The proposed key-frame reference method was then combined with the multi-scale pyramid optical flow algorithm; furthermore, the detected corner points were applied to the aforementioned combination, thereby achieving tracking matching and motion estimation. Consequently, electronic image stabilization of the airborne infrared images was realized. Using this method, multiple sets of jittery infrared image sequences were processed; the image size was 640´512. Experimental results show that the proposed algorithm exhibits a better corner detection effect than the traditional Harris corner detection algorithm. It can remove jitter from the airborne infrared image sequence and ensure real-time processing at an acquisition rate of 50 fps.

参考文献/References:

[1] 熊晶莹, 戴明, 赵春蕾. 红外激光车载云台去抖动设计[J]. 红外与激光工程, 2018, 47(1): 295-301.
XIONG Jingying, DAI Ming, ZHAO Chunlei. Dejitter design for infrared laser vehicle cloud platforms[J]. Infrared and Laser Engineering, 2018, 47(1): 295-301.
[2] Ton-Thi K, Nguyen T, Hong M. Video stabilization algorithm using a moving alpha-trimmed mean filter window[C]//The 18th IEEE International Symposium on Consumer Electronics, 2014: 1-2.
[3] Yousaf A, Khurshid K, Khan M J, et al. Real time video stabilization methods in IR domain for UAVs—a review[C]//2017 Fifth International Conference on Aerospace Science & Engineering (ICASE), 2017: 1-9.
[4] Puglisi G, Battiato S. A robust image alignment algorithm for video stabilization purposes[C]//IEEE Transactions on Circuits and Systems for Video Technology, 2011, 21(10): 1390-1400.
[5] Umrikar D P, Tade S L. Implementation of video stabilization algorithm using block based method[C]//2017 International Conference on Computing, Communication, Control and Automation (ICCUBEA), 2017: 1-4.
[6] LIU Lu, DU Weitao. The vehicle-borne electronic image stabilization system based on Gray Projection Algorithm[C]//International Conference on Electric Information and Control Engineering, 2011: 4687-4690.
[7] SHI X, KANGK, CAO Y. An iterative method for optical flow estimation with motion blur[C]//2016 Visual Communications and Image Processing (VCIP), 2016: 1-4.
[8] WANGJ M, CHOU H P, CHENS W, et al. Video stabilization for a hand-held camera based on 3D motion model[C]//16th IEEE International Conference on Image Processing (ICIP), 2009: 3477-3480.
[9] AGUILAR W G, ANGULO C. Robust video stabilization based on motion intention for low-cost micro aerial vehicles[C]// 11th International Conference on Multi-Conference on Systems, Signals & Devices, 2014: 1-6.
[10] Sultan B, Ahmed J , Jalil A , et al. Translation and rotation invariant video stabilization for real time applications[C]//IEEE International Conference on Signal and Image Processing Applications (ICSIPA), 2017: 479-484.
[11] 唐永鹤, 陶华敏, 卢焕章, 等. 一种基于Harris算子的快速图像匹配算法[J]. 武汉大学学学报: 信息科学版, 2012, 37(4): 406-409, 414.
TANG Yonghe, TAO Huamin, LU Huanzhang, et al. A fast image matching algorithm based on Harris operator[J]. Journal of Wuhan University: Information Science Edition, 2012, 37(4): 406-409, 414.
[12] 张立亭, 黄晓浪, 鹿琳琳, 等. 基于灰度差分与模板的Harris角点检测快速算法[J]. 仪器仪表学报, 2018, 39(2): 218-224.
ZHANG Liting, HUANG Xiaolang, LU Linlin, et al. Fast Harris corner detection based on gray difference and template[J]. Journal of Instrumentation, 2018, 39(2): 218-224.
[13] SHI Jianbo, Carlo Tomasi. Good features to track[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 1994: 593-600.
[14] 尹丽华, 李范鸣, 刘士建. 基于区域分割与融合的全景稳像算法[J]. 红外与激光工程, 2018, 47(9): 391-400.
YIN Lihua, LI Fanming, LIU Shijian. Panoramic image stabilization algorithm based on region segmentation and fusion[J]. Infrared and Laser Engineering, 2018, 47(9): 391-400.

相似文献/References:

[1]韩 颖,黄剑侠,高 原.MEMS陀螺在红外成像系统中的研究应用[J].红外技术,2015,37(三):248.[doi:10.11846/j.issn.1001_8891.2015030014]
 HAN Ying,HUANG Jian-xia,GAO Yuan.Applications of MEMS Gyroscope in Infrared Imaging Systems[J].Infrared Technology,2015,37(6):248.[doi:10.11846/j.issn.1001_8891.2015030014]
[2]范永杰,陈 华.基于MEMS陀螺仪的实时电子稳像技术[J].红外技术,2015,37(九):724.[doi:10.11846/j.issn.1001_8891.201509003]
 FAN Yong-jie,CHEN Hua.Real-time Video Stabilization System Based on MEMS Gyroscope[J].Infrared Technology,2015,37(6):724.[doi:10.11846/j.issn.1001_8891.201509003]

备注/Memo

备注/Memo:
收稿日期:2019-11-15;修订日期:2020-06-09.
作者简介:王施鳗(1995-),女,辽宁人,硕士研究生,主要研究方向为图像处理、电子稳像。E-mail:wangshiman1995@163.com。
基金项目:国家自然科学基金(61701069);中央高校基本科研业务费专项资金(3132019340,3132019200)
更新日期/Last Update: 2020-06-22