[1]葛朋,杨波,洪闻青,等.一种结合PE的高动态范围红外图像压缩及细节增强算法[J].红外技术,2020,42(3):279-285.[doi:10.11846/j.issn.1001_8891.202003011]
 GE Peng,YANG Bo,HONG Wenqing,et al.Dynamic Range Compression and Detail Enhancement Algorithm Combined with PE for High Dynamic Range Infrared Images[J].Infrared Technology,2020,42(3):279-285.[doi:10.11846/j.issn.1001_8891.202003011]
点击复制

一种结合PE的高动态范围红外图像压缩及细节增强算法
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
42卷
期数:
2020年第3期
页码:
279-285
栏目:
出版日期:
2020-03-23

文章信息/Info

Title:
Dynamic Range Compression and Detail Enhancement Algorithm Combined with PE for High Dynamic Range Infrared Images
文章编号:
1001-8891(2020)05-0279-07
作者:
葛朋杨波洪闻青王晓东刘传明苏兰苏俊波
昆明物理研究所
Author(s):
GE PengYANG BoHONG WenqingWANG XiaodongLIU ChuanmingSU LanSU Junbo
Kunming Institute of Physics
关键词:
引导滤波红外图像细节增强动态范围压缩平台直方图均衡
Keywords:
guided image filter infrared image detail enhancement dynamic range compression plateaus-histogram equalization
分类号:
TP391
DOI:
10.11846/j.issn.1001_8891.202003011
文献标志码:
A
摘要:
针对在提升高动态范围红外图像中潜在或弱小目标细节的同时,还需兼顾噪声抑制、对比度增强的问题,提出了一种基于引导滤波图像分层的动态范围及细节增强算法。对背景层采用平台直方图均衡算法进行压缩,对细节层先采用中值滤波进行去噪,再采用非线性映射对细节中潜在的弱小目标细节进行增强,最后按照一定权重合并得到细节增强后的图像。综合主、客观实验结果,相对于映射类、直方图均衡、双边滤波分层增强等算法,该算法能够在动态范围压缩的过程中提高红外图像目标场景的对比度,突显其纹理特征,取得良好的细节增强效果。
Abstract:
To address the problem of noise suppression and contrast enhancement in enhancing the details of potential or small targets in infrared images with a high dynamic range, a dynamic range and detail enhancement algorithm based on a guided filter image is proposed. The base layer is compressed by a plateau-histogram equalization algorithm. The detail layer is denoised by a median filter first, and then the potential and small target details are enhanced by nonlinear mapping. Finally, the image is integrated according to a certain weight to obtain the enhanced details. Based on the subjective and objective experimental results, compared with algorithms based on mapping, histogram equalization, and a bilateral filter, this algorithm can improve the contrast of the target scene of the infrared image in the process of dynamic range reduction. The proposed algorithm can highlight the texture features and obtain a good detail enhancement effect.

参考文献/References:

[1]? 韦瑞峰, 赵荣普, 徐肖庆, 等. 基于直方图的红外图像细节增强算法研究[J]. 红外技术, 2016, 38(6): 472-475.
WEI Ruifeng, ZHAO Rongpu, XU Xiaoqing, et al. Infrared Image Detail Enhancement Based on Histogram[J]. Infrared Technology, 2016, 38(6): 472-475.
[2]? VickersV. Plateau equalization algorithm for real-time display of high-quality infrared imagery[J]. Optical engineering, 1996, 35(7): 1921-1926.
[3]? RezaA. Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement[J]. The Journal of VLSI Signal Processing, 2004, 38(1): 35-44.
[4]? Branchitta F, DianiM, CorsiniG, et al. New technique for the visualization of high dynamic range infrared images[J]. SPIE Optical Engineering, 2009, 48(9): 76401-76414.
[5]? ZUO C, CHEN Q, LIU N, et al. Display and detail enhancement for high-dynamic-range infrared images[J]. SPIE Optical Engineering, 2011, 50(12): 127401-127409.
[6]? 杨静. 基于小波变换的低对比度图像增强方法[J]. 计算机时代, 2011(1): 10-12.
YANG Jing. Approach of Low-contrast Image Enhancement Based on Wavelet Transform[J]. Infrared Technology, 2011(1): 10- 12.
[7]? 朱道广, 隋修宝, 朱才高, 等. 基于多尺度的高动态红外图像增强算法[J]. 红外技术, 2013, 35(8): 476-481.
? ? ZHU Daoguang, SUI Xiubao, ZHU Caigao, et al. Enhancement Algorithm for High Dynamic Range Infrared Image Based on Multi-scale Processing[J]. Infrared Technology, 2013, 35(8): 476-481.
[8]? Rossi A, Acito N, Diani M, et al. High dynamic range compression for visualization of IR images in maritime scenarios[C]//SPIE Proceedings, 2012, 8451: 85410V1-85410V10.
[9]? 谢伟, 周玉钦, 游敏. 融合梯度信息的改进引导滤波[J]. 中国图象图形学报, 2016, 21(9): 1119-1126.
XIE Wei, ZHOU Yuqin, YOU Min. Improved guided image filtering integrated with gradient information[J]. Journal of Image and Graphics, 2016, 21(9): 1119-1126.
[10]? LIU Ning, ZHAO Dongxue. Detail enhancement for high dynamic range infrared images based on guided image filter[J]. Infrared Physics and Technology, 2014, 67(7): 138-147.

相似文献/References:

[1]郭水旺,王宝红,季钢,等.基于基因表达式编码算法的红外图像轮廓提取[J].红外技术,2013,35(01):038.
 GUO Shui-wang,WANG Bao-hong,JI Gang,et al. Infrared Image Contour Extraction Based on the Gene Expression Coding Algorithm[J].Infrared Technology,2013,35(3):038.
[2]孙爱平,皮冬明,安长亮,等. 光机装校阶段红外与可见光图像配准技术研究[J].红外技术,2013,35(01):050.
 SUN Ai-ping,PI Dong-ming,AN Chang-liang,et al. Study on IR/Visible Image Registration for Lens Assembly[J].Infrared Technology,2013,35(3):050.
[3]路建方,王新赛,肖志洋,等. 基于FPGA的红外图像自适应分段线性增强算法[J].红外技术,2013,35(02):102.
 LU Jian-fang,WANG Xin-sai,XIAO Zhi-yang,et al. An Adaptive Piecewise Linear Enhance Algorithm for Infrared Image Based on FPGA[J].Infrared Technology,2013,35(3):102.
[4]徐铭蔚,李郁峰,陈念年,等.多尺度融合与非线性颜色传递的微光与红外图像染色[J].红外技术,2012,34(12):722.
 XU Ming-wei,LI Yu-feng,CHEN Nian-nian,et al. Coloration of the Low Light Level and Infrared Image Using Multi-scale Fusion and Nonlinear Color Transfer Technique[J].Infrared Technology,2012,34(3):722.
[5]纪利娥,杨风暴,王志社,等. 基于边缘图像和SURF特征的可见光与红外图像的匹配算法[J].红外技术,2012,34(11):629.
 JI Li-e,YANG Feng-bao,WANG Zhi-she,et al.Visible and Infrared Image Matching Algorithm Based on Edge Image and SURF Features[J].Infrared Technology,2012,34(3):629.
[6]张红辉,罗海波,余新荣,等. 改进的神经网络红外图像非均匀性校正方法[J].红外技术,2013,35(04):232.
[7]张强,侯宁,刘红燕. 红外焦平面阵列非均匀性多点实时压缩校正研究[J].红外技术,2012,34(10):593.
 ZHANG Qiang,HOU Ning,LIU Hong-yan. Study on Real-time Multi-points Compressive Nonuniformity Correction of IRFPA[J].Infrared Technology,2012,34(3):593.
[8]路建方,王新赛,肖志洋,等. 基于灰度分层的FPGA红外图像伪彩色实时化研究[J].红外技术,2013,35(05):285.
 LU Jian-fang,WANG Xin-sai,XIAO Zhi-yang,et al. The Research on Real-time Pseudo-color of Infrared Image in FPGA Based on Gray Delaminating[J].Infrared Technology,2013,35(3):285.
[9]陈钱.红外图像处理技术现状及发展趋势[J].红外技术,2013,35(06):311.
 CHEN Qian.The Status and Development Trend of Infrared Image Processing Technology[J].Infrared Technology,2013,35(3):311.
[10]谭东杰,张安.基于局部直方图规定化的红外图像非均匀性校正[J].红外技术,2013,35(06):325.
 TAN Dong-jie,ZHANG An.Non-uniformity Correction Based on Local Histogram Specification[J].Infrared Technology,2013,35(3):325.
[11]温海滨,毕笃彦,马时平,等.消除光晕和细节增强的多尺度Retinex红外图像增强[J].红外技术,2016,38(2):149.[doi:10.11846/j.issn.1001_8891.201602012]
 WEN Haibin,BI Duyan,MA Shiping,et al.Halo-free and Detail Enhancement Based on Multi-scale Retinex for Infrared Image [J].Infrared Technology,2016,38(3):149.[doi:10.11846/j.issn.1001_8891.201602012]
[12]葛 朋,杨 波,毛文彪,等. 基于引导滤波的高动态红外图像增强处理算法[J].红外技术,2017,39(12):1092.[doi:10.11846/j.issn.1001_8891.201712005]
 GE Peng,YANG Bo,MAO Wenbiao,et al. High Dynamic Range Infrared Image Enhancement Algorithm Based on Guided Image Filter [J].Infrared Technology,2017,39(3):1092.[doi:10.11846/j.issn.1001_8891.201712005]
[13]葛 朋,杨 波,韩庆林,等.一种基于引导滤波图像分层的红外图像细节增强算法[J].红外技术,2018,40(12):1161.[doi:10.11846/j.issn.1001_8891.201812008]
 GE Peng,YANG Bo,HAN Qinglin,et al.Infrared Image Detail Enhancement Algorithm Based on Hierarchical Processing by Guided Image Filter[J].Infrared Technology,2018,40(3):1161.[doi:10.11846/j.issn.1001_8891.201812008]

备注/Memo

备注/Memo:
收稿日期:2019-10-23;修订日期:2020-03-09.
作者简介:葛朋(1992-),男,硕士,主要研究方向为红外图像处理技术。E-mail:542851112@qq.com。
通信作者:洪闻青(1986-),男,博士,高工,主要研究方向为红外成像技术。E-mail:hongwenqing@aliyun.com。

更新日期/Last Update: 2020-03-17