[1]邓蔚,孙鸿生,朱颖峰,等.超长线列红外探测器与制冷机耦合的柔性冷链发展现状[J].红外技术,2020,42(1):010-18.[doi:10.11846/j.issn.1001_8891.202001002]
 DENG Wei,SUN Hongsheng,ZHU Yingfeng,et al.Development Status of the Flexible Thermal Link Coupling Between Cryocooler and Long Linear Infrared Detector[J].Infrared Technology,2020,42(1):010-18.[doi:10.11846/j.issn.1001_8891.202001002]
点击复制

超长线列红外探测器与制冷机耦合的柔性冷链发展现状
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
42卷
期数:
2020年第1期
页码:
010-18
栏目:
出版日期:
2020-01-23

文章信息/Info

Title:
Development Status of the Flexible Thermal Link Coupling Between Cryocooler and Long Linear Infrared Detector

文章编号:
1001-8891(2020)01-0010-09
作者:
邓蔚孙鸿生朱颖峰徐冬梅李冉黄一彬
昆明物理研究所
Author(s):
DENG WeiSUN HongshengZHU YingfengXU DongmeiLI RanHUANG Yibin
Kunming Institute of Physics
关键词:
超长线列红外探测器制冷机耦合柔性冷链
Keywords:
long linear infrared detector cryocooler coupling flexible thermal link
分类号:
TN215
DOI:
10.11846/j.issn.1001_8891.202001002
文献标志码:
A
摘要:
随着航天技术对更大视场、更高分辨率的需求,线列红外探测器规模越来越大,传统的制冷机与红外探测器单点耦合方式,已经无法满足超长线列红外探测器芯片温度均匀性的要求。结合国内外多家研究单位的设计及试验情况,对各类柔性冷链进行了对比分析,从热学性能及力学性能出发,总结了各类柔性冷链设计的特点及其适用性。
Abstract:
With the demand of from space technology for a large field of view and higher resolution, the scale of line infrared detectors is increasing. Single point coupling mode fails to meet the temperature uniformity requirement of long linear infrared detector chips. This study compares and analyzes various types of flexible thermal links, based on the design and the testing outcomes from many domestic and international research institutes. The characteristics and applicability of the various flexible thermal link designs, in terms of thermal and mechanical properties, are summarized.

参考文献/References:

[1]? 东海杰, 张磊, 白绍竣, 等. 长线列红外探测器组件冷台面结构设计[J]. 激光与红外, 2018, 48(8): 1020-1022.
DONG Haijie, ZHANG Lei, BAI Shaojun, et al. Structure design of the cold table for long linear infrared detector assembly[J]. Laser & Infrared, 2018, 48(8): 1020-1022.
[2]? 范广宇, 范崔, 李俊, 等. 超长线列红外焦平面杜瓦冷链设计[J]. 红外与激光工程, 2015, 44(7): 2021-2016.
FAN Guangyu, FAN Cui, LI Jun, et al. Cold strap design of long linear IRFPA dewar[J]. Infrared and Laser Engineering, 2015, 44(7): 2021-2016.
[3]? Dolce S, Hauser A. Analysis, design and testing of a flexible thermal link[J]. Space Environmental Control Systems, 1997: 337-340.
[4]? Amundsen M E. SAE Technical Paper Series - Thermal Design and Analysis for the Cryogenic MIDAS Experiment[C]//SAE International Conference On Environmental Systems, 1997: 1.
[5]? LI J, Schmit T J. Advanced baseline sounder (ABS) for future geostationary operational environmental satellites (GOES-R and beyond)[C]//Proceedings of SPIE-The International Society for Optical Engineering, 2003, 4895: 111-122.
[6]? Morse P G, Bates J C, Miller C R, et al. Development and test of the Atmospheric Infrared Sounder (AIRS) for the NASA Earth Observing System (EOS)[C]//Sensors, Systems, & Next-generation Satellites III. Sensors, Systems, and Next-Generation Satellites III, 1999: 281-292.
[7]? Sugimoto M, Sekimoto Y, Yokogawa S, et al. Thermal link for cartridge-type cryostat[J]. Cryogenics, 2003, 43(8): 435-439.
[8]? Trollier T, Tanchon J, Lacapere J, et al. Flexible Thermal Link Assembly Solutions for Space Applications[J]. Cryocoolers, 2016, 19: 595-603.
[9]? Montesano M. High erformance flexible thermal strap[C]//39th Aerospace Sciences Meeting and Exhibit, 2001: 218.
[10]? Yao A. Interface portion structure and reinforcing structure of flexible thermal joint: U.S. Patent 5,769,158[P]. 1998-6-23.
[11]? 闫涛, 洪国同, 蔡京辉, 等. 一种应用于低温系统的柔性冷量传输带[C]//全国低温工程大会暨中国航天低温专业信息网学术交流会, 2007: 299-303.
YAN Tao, HONG Guotong, CAI Jinghui, et al. A flexible thermal strap applied to cryogenic system[C]//National Cryogenic Engineering Conference and Acedemic Meeting of China Aerospace Cryogenic Information Network, 2007: 299-303.
[12]? 孙述泽, 许国太, 王田刚, 等. 一种双臂型低温导热带的性能研究[J]. 低温与超导, 2013, 41(5):10-12.
SUN Shuze, XU Guotai, WANG Tiangang, et al. Study on performance of cryogenic two-arm flexible thermal strap[J]. Cryogenics, 2013, 41(5): 10-12.
[13]? Urquiza E, Vasquez C, Rodriguez J, et al. Development and testing of an innovative two-arm focal-plane thermal strap(TAFTS)[J]. Cryogenics, 2012, 52(4-6): 0-3.
[14]? Williams B, Jensen S, Batty J C. An Advanced Solderless Flexible Thermal Link[C]//Proc of SPIE, 1996, 2814: 209-216.
[15]? 王亚妮, 张巍, 迟国春, 等. 制冷机与红外探测器冷链耦合技术研究[J]. 激光与红外, 2018, 48(2): 148-152.
WANG Yani, ZHANG Wei, CHI Guochun, et al. Research of cold chain linking technology between cryocooler and infrared detector[J]. Laser & Infrared, 2018, 48(2): 148-152.

相似文献/References:

[1]王三煜.记忆合金调节式制冷器研究[J].红外技术,2007,29(9):528.
 WANG San-yu.A Self-Regulated Cryocooler Made by SMA[J].Infrared Technology,2007,29(1):528.
[2]胡白楠,陈晓屏,夏明.微型斯特林制冷机的进展[J].红外技术,2006,28(12):730.
 HU Bai-nan,CHEN Xiao-Ping,XIA Ming.The Development of Low-Power Stirling Cryocooler[J].Infrared Technology,2006,28(1):730.
[3]王三煜.制冷器在导弹系统中的应用[J].红外技术,2005,27(5):399.
 WANG San-yu.Application of Cryocoolers in Missile Systems[J].Infrared Technology,2005,27(1):399.

备注/Memo

备注/Memo:
收稿日期:2019-08-14;修订日期:2019-12-24.
作者简介:邓蔚(1994-),男,硕士,工程师,主要从事杜瓦研究工作。E-mail: moiiom1120@163.com。

更新日期/Last Update: 2020-01-20