[1]何苹,王莹莹,岳韶华.先进红外传感器对隐身飞机作用距离估算研究[J].红外技术,2020,42(9):899-904.[doi:10.11846/j.issn.1001_8891.202009013]
 HE Ping,WANG Yingying,YUE Shaohua.Operating Range of the Advanced Infrared Detector for the Stealth Aircraft[J].Infrared Technology,2020,42(9):899-904.[doi:10.11846/j.issn.1001_8891.202009013]
点击复制

先进红外传感器对隐身飞机作用距离估算研究
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
42卷
期数:
2020年第9期
页码:
899-904
栏目:
出版日期:
2020-09-23

文章信息/Info

Title:
Operating Range of the Advanced Infrared Detector for the Stealth Aircraft
文章编号:
1001-8891(2020)06-0899-06
作者:
何苹1王莹莹2岳韶华2
1. 西京学院 信息工程学院;
2. 空军工程大学 防空反导学院
Author(s):
HE Ping1WANG Yingying2YUE Shaohua2
1. Information Engineering Academy, Xijing University;
2. Air and Missile Defense College, Air Force Engineering University

关键词:
隐身飞机作用距离IRST红外格斗弹F-22F-35
Keywords:
stealth aircraft operating range infrared search and tracking system(IRST) infrared dog-fight missile F-22 F-35
分类号:
TN219
DOI:
10.11846/j.issn.1001_8891.202009013
文献标志码:
A
摘要:
为了有效地估算先进红外传感器对隐身飞机的作用距离,以F-22与F-35进行对抗性仿真为想定,计算了F-22在长波和中波波段的红外辐射强度,拟合了典型条件下大气透过率的经验公式,推测了F-35机载IRST和AIM-9X红外导引头的特征参数,利用逐步逼近法,计算了F-35机载IRST和AIM-9X导弹导引头对F-22的作用距离。计算结果表明,F-22具有较强的红外隐身能力,可使F-35的IRST对其迎头作用距离不大于62 km,但是F-22在近距作战中,仍将受到红外格斗弹的较大威胁。鉴于F-22的红外辐射随红外传感器探测角度的变化而敏感性高的特点,建议飞机编队进行红外反隐身探测时,采用稀疏编队方式,以提高探测概率。
Abstract:
To compute the operating range of the advanced infrared detector for the stealth aircraft, the combat simulation scenario of F-22 and F-35 is given in the paper. In the scenario, the infrared radiation intensity of F-22 is computed in middle wave-band and long wave-band, the fitting formula of the atmospheric transmittance is given under typical conditions, the characteristic parameters of the F-35 airborne IRST and AIM-9X infrared seeker are inferred and the operating ranges of F-35 airborne IRST and AIM-9X infrared seeker for F-22 are computed with the gradually approaching method. The computation shows that F-22 has good stealth capability and the operating ranges of F-35 airborne IRST is less than 62 km from the nose of F-22 while the infrared dog-fight missiles threat F-22 in short range strikes. The infrared radiation of F-22 is sensitive to the detection angle of the infrared sensors, thus in the aircraft fleet anti-stealth infrared detection, sparse formation is adopted to increase the detection probability.

参考文献/References:

[1] 杨伟. 美国第四代战斗机F-22“猛禽”[M]. 北京: 航空工业出版社, 2009.
YANG Wei. American Fourth-generation Fighter F-22 Raptor[M]. Beijing: Aviation Industry Press, 2009.
[2] 王海晏. 红外辐射及应用[M]. 西安: 西安电子科技大学出版社, 2014.
WANG Haiyan. Infrared Radiation and Application[M]. Xi’an: Xi’an University of Electronic Science and Technology Press, 2014.
[3] Gonda T G, Curran A R. Applications of the MuSES infrared signature code[R]. AD-A457152, 2005.
[4] 朱宝鎏. 漫谈飞机红外隐身技术[J]. 兵器知识, 2011(5): 46-47.
ZHU Baoliu. Ramble on infrared stealth technology of aircraft[J]. Ordnance Knowledge, 2011(5): 46-47.
[5] 黄臻, 姜伟, 张杨. 飞机红外隐身及探测技术简介[J]. 红外, 2017, 38(8): 1-7.
HUANG Zhen, JIANG Wei, ZHANG Yang. Brief introduction to infrared stealth and detection technology of aircraft[J]. Infrared, 2017, 38(8): 1-7.
[6] 刘娟, 龚光红, 韩亮. 飞机红外辐射特性建模与仿真[J]. 红外与激光工程, 2011, 40(7): 1209-1213.?
LIU Juan, GONG Guanghong, HAN Liang. Modeling and simulation of airplane infrared characteristic[J]. Infrared and Laser Engineering, 2011, 40(7): 1209-1213.
[7] 李飞. 大气传输对中长波红外辐射衰减分析[J]. 红外技术, 2019, 41(4): 311-316.
LI Fei. Analysis of atmospheric transmission impact on mid-wave and long-wave infrared radiation[J]. Infrared Technology, 2019, 41(4): 311-316.
[8] 何建伟, 曹晨, 张昭. 红外系统对隐身飞机的探测距离分析[J]. 激光与红外, 2013, 43(11): 1243-1247.
HE Jianwei, CAO Chen, ZHANG Zhao. Analysis on operating range of a IR system for stealth aircraft[J]. Laser & Infrared, 2013, 43(11): 1243-1247.
[9] 王芳, 罗寰,王海晏, 等. 机载红外搜索跟踪系统有效探测区域研究[J].激光与红外, 2018, 48(5): 585-590.
WANG Fang, LUO Huan, WANG Haiyan, et al. Research on effective detection area of airborne infrared search and tracking system[J]. Laser & Infrared, 2018, 48(5): 585-590.
[10] 马晓平, 赵良玉. 红外导引头关键技术国内外研究现状综述[J]. 航空兵器, 2018(3): 3-10.
MA Xiaoping, ZHAO Liangyu. An overview of infrared seeker key technologies at home and abroad[J]. Aero Weaponry, 2018(3): 3-10.
[11] RD小哈得逊. 红外系统原理[M]. 北京: 国防工业出版社, 1975.
Richard D Hudson J R. Infrared System Engineering[M]. Beijing: National Defend Industry Press, 1975.
[12] 牟达, 王建立, 陈涛.凝视型红外搜索跟踪系统对高速飞机作用距离的分析[J]. 光学技术, 2007, 32(3): 420-423.
MU Da, WANG Jianli, CHEN Tao. Analysis on operating range of a staring infrared search and track system for high-speed aircraft[J]. Optical Technique, 2007, 32(3): 420-423.
[13] 何苹, 左文博, 杨建军. 预警机红外辐射特性研究[J]. 装备指挥技术学院学报, 2009, 36(5): 114-116.
HE Ping, ZUO Wenbo, YANG Jianjun. Study on infrared radiation feature of early-warning aircraft[J]. Journal of the Academy of Equipment Command & Technology, 2009, 36(5): 114-116.
[14] 刘剑. 飞行器红外隐身性能评估系统研究[D]. 南京: 南京理工大学, 2017.
LIU Jian. Infrared Stealth Performance Evaluation System of Aircraft[D]. Nanjing: Nanjing University of Science and Technology, 2017.
[15] 罗明东, 李悦霖. F-22战斗机红外特征预测模型及飞行测试验证[J]. 国际航空杂志, 2010(11): 60-61.
LUO Mingdong, LI Yuelin. F-22 IR signature flight test model validation[J]. International Aviation, 2010(11): 60-61.
[16] 杨百剑, 万欣. 新一代机载红外搜索跟踪系统技术发展分析[J]. 激光与红外, 2011, 41(9): 961-964.
YANG Baijian, WAN Xin. New generation of IRST technology in plane development[J]. Laser & Infrared, 2011, 41(9): 961-964.
[17] 申洋, 唐明文. 机载红外搜索跟踪系统(IRST)综述[J]. 红外技术, 2003, 25(1): 13-18.
SHEN Yang, TANG Mingwen. An overview of infrared search and track (IRST) system[J]. Infrared Technology, 2003, 25(1): 13-18.
[18] 贾林通, 童中翔, 王超哲, 等. AIM-9X红外成像制导导弹的发展综述与启示[J]. 飞航导弹, 2015(12): 20-24.
JIA Lintong, TONG Zhongxiang, WANG Chaozhe, et al. Development overview and revelations of AIM-9X infra-guided missile[J]. Aerodynamic Missile Journal, 2015(12): 20-24.

相似文献/References:

[1]樊宏杰,陈前荣,杨淼淼,等. 不同气象条件下飞机红外辐射等效折算[J].红外技术,2012,34(11):672.
 FAN Hong-jie,CHEN Qian-rong,YANG Miao-miao,et al.Equivalent Calculation on Infrared Radiation of Airplane under Different Weather Condition[J].Infrared Technology,2012,34(9):672.
[2]王忆锋,史衍丽,李夏玲.论红外探测系统作用距离的比较分析[J].红外技术,2012,34(09):515.
 WANG Yi-feng,SHI Yan-li,LI Xia-ling.On the Comparative Analysis of Range Performance of Infrared Detection Systems[J].Infrared Technology,2012,34(9):515.
[3]周伟,马妮,吴晗平.近地层紫外探测作用距离及其影响因素研究[J].红外技术,2011,33(06):357.
 ZHOU Wei,MA Ni,WU Han-ping.Operating Rang of Ultraviolet Detection Systemin the Surface Layer and The Study of Its Influence Factors[J].Infrared Technology,2011,33(9):357.
[4]寇 添,王海晏,王 芳,等.基于机载IRST系统的高超音速飞行器红外探测研究[J].红外技术,2014,36(9):748.[doi:10.11846/j.issn.1001_8891.201409014]
 KOU Tian,WANG Hai-yan,WANG Fang,et al.Study of Infrared Detection to Hypersonic Vehicle Based on Airborne IRST Systems[J].Infrared Technology,2014,36(9):748.[doi:10.11846/j.issn.1001_8891.201409014]
[5]李凡,刘上乾,张峰,等.点源目标的红外搜索与跟踪系统的作用距离估算[J].红外技术,2008,30(九):502.
 LI Fan,LIU Shang-qian,ZHANG Feng,et al.Operating Distance Estimate of IRST for Infrared Point Target[J].Infrared Technology,2008,30(9):502.
[6]王连振,吴晗平,李旭辉,等.红外成像系统综合性能评价方法研究[J].红外技术,2015,37(一):057.[doi:10.11846/j.issn.1001_8891.201501012]
 WANG Lian-zhen,WU Han-ping,LI Xu-hui,et al.Research on the Methods of IR Imaging System?Comprehensive Performance Evaluation[J].Infrared Technology,2015,37(9):057.[doi:10.11846/j.issn.1001_8891.201501012]
[7]吴晗平.红外点目标探测系统作用距离方程理论研究——基于探测率温度特性与背景影响[J].红外技术,2007,29(6):341.
 WU Han-ping.Operating Distance Equation for Infrared Point Target Detect SystemBased on Temperature Characteristic of Detectivity and Background Influence[J].Infrared Technology,2007,29(9):341.
[8]刘博,张斌,王海晏.IRST作用距离标定方法研究[J].红外技术,2006,28(11):633.
 LIU Bo,ZHANG Bin,WANG Hai-yan.A New Method for Demarcating Acceptance Range of IRST[J].Infrared Technology,2006,28(9):633.
[9]何 恒,白廷柱.红外热成像系统作用距离预测方程计算误差探析[J].红外技术,2015,37(九):713.[doi:10.11846/j.issn.1001_8891.201509001]
 HE Heng,BAI Ting-zhu.Calculation Error Analysis of the Distance Equation for Infrared Imaging System[J].Infrared Technology,2015,37(9):713.[doi:10.11846/j.issn.1001_8891.201509001]

备注/Memo

备注/Memo:
收稿日期:2019-07-23;修订日期:2019-08-19.
作者简介:何苹(1982-),男,副教授,博士,主要研究武器装备军民融合发展。E-mail:47619870@qq.com。
基金项目:中国博士后科学基金面上资助项目(2013M532222)。

更新日期/Last Update: 2020-09-21