[1]曹红业,张天棋.基于辐射传输模型的高分二号影像大气校正方法研究[J].红外技术,2020,42(6):534-541.[doi:doi:10.11846/j.issn.1001_8891.202006004]
 CAO Hongye,ZHANG Tianqi.Atmospheric Correction Algorithm for GF-2 Image Based On a Radiative Transfer Model [J].Infrared Technology,2020,42(6):534-541.[doi:doi:10.11846/j.issn.1001_8891.202006004]
点击复制

基于辐射传输模型的高分二号影像大气校正方法研究
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
42卷
期数:
2020年第6期
页码:
534-541
栏目:
出版日期:
2020-06-23

文章信息/Info

Title:
Atmospheric Correction Algorithm for GF-2 Image
Based On a Radiative Transfer Model
文章编号:
1001-8891(2020)06-0534-08
作者:
曹红业1张天棋2
1. 长安大学 地质工程与测绘学院,陕西 西安 710061;2. 西南科技大学 环境与资源学院,四川 绵阳 621010
Author(s):
CAO Hongye1ZHANG Tianqi2
1. School of Geological Engineering and Surveying Engineering, Chang’an University, Xi’an 710061, China;
2. School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China
关键词:
辐射传输模型GF-2影像大气校正查找表气溶胶光学厚度6S
Keywords:
radiation transfer model GF-2 image atmospheric correction look-up table aerosol optical depth(AOD) 6S
分类号:
TP751
DOI:
doi:10.11846/j.issn.1001_8891.202006004
文献标志码:
A
摘要:
高分二号卫星的成功发射,标志着我国遥感卫星进入了亚米级高空间分辨率时代,遥感影像在定量反演,地物识别和变化分析等领域将有重要作用。大气校正的精度是影响其定量化应用的重要因素。由于高分二号遥感数据缺乏短波红外波段,无法采用暗像元法进行大气校正。提出一种基于辐射传输模型的高分二号影像大气校正方法,利用6S(second simulation of the satellite signal in the solar spectrum)辐射传输模型建立大气校正系数查找表,利用同步MODIS影像数据结合改进后的暗像元方法反演气溶胶光学厚度,确定大气校正系数,消除高分二号影像大气分子和气溶胶等的吸收和散射的影响,实现GF-2数据的大气校正。选取地表平坦均一的敦煌辐射校正场作为实验区,通过同步的实测数据对校正结果进行精度评价,并且比较大气校正前后归一化植被指数NDVI。结果表明:最小相对误差仅为0.9%,大气校正之后影像数据更真实地反映了地物的反射特性;大气校正后的NDVI大大增强了植被信息反差,突出了GF-2卫星传感器的植被信息区分能力。
Abstract:
The successful launch of the GF-2 satellite indicates that China’s remote sensing satellites have entered the era of high spatial resolution of the sub-meter level. Remote sensing images will play an important role in quantitative inversion, ground object recognition, and change analysis. The accuracy of its atmospheric correction is an important factor that affects its quantitative application. Due to the lack of a short-wave infrared band in GF-2, it is impossible to use a dark pixel method for atmospheric correction. A method of atmospheric correction for the GF-2 image based on a radiation transfer model is proposed. The atmospheric correction coefficient lookup table is established by using 6S (Second Simulation of the Satellite Signal in the Solar Spectrum) radiation transfer model. The aerosol optical thickness (AOT) is retrieved by combining synchronous MODIS image data with an improved dark pixel method. The atmospheric correction parameters are determined to eliminate the influence of absorption and scattering of atmospheric molecules and aerosols in the GF-2 image and to achieve atmospheric correction of GF-2 data. Dunhuang radiation correction field with a flat and uniform surface is selected as the experimental area. The accuracy of the correction results is evaluated by synchronous measured data, and the normalized difference vegetation index (NDVI) before and after atmospheric correction is compared. The results show that the minimum relative error is only 0.9%. The image data after atmospheric correction can accurately reflect the reflection characteristics of ground objects. NDVI after atmospheric correction greatly enhances the contrast of vegetation information and highlights the ability of vegetation information discrimination of the GF-2 satellite sensor.

参考文献/References:

[1] 王忠武, 刘顺喜, 戴建旺, 等. “高分二号”卫星多光谱与全色影像配准策略[J]. 航天返回与遥感, 2015, 36(4): 48-53.
WANG Zhongwu, LIU Shunxi, DAI Jianwang, et al. Registration strategy for GF-2 satellite multispectral and panchromatic images[J]. Spacecraft Recovery & Remote Sensing, 2015, 36(4): 48-53.
[2] 李玮, 康晓光, 陈雷. 一种MODIS遥感图像大气校正的快速算法[J]. 信号处理, 2007, 23(5): 751-754.
LI Wei, KANG Xiaoguang, CHEN Lei. A fast atmospheric correction algorithm for MODIS remote sensing images[J]. Signal Processing, 2007, 23(5): 751-754.
[3] 阿布都瓦斯提, 秦其明, 朱黎江. 基于6S模型的可见光、近红外遥感数据的大气校正[J]. 北京大学学报, 2004, 40(4): 611-618.
Ghulam A, QIN Qiming, ZHU Lijiang. 6S model based atmospheric correction of visible and near-infrared data and sensitivity analysis[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2004, 40(4): 611-618.
[4] Kaufman Y J, Remer L. Detection of forest using mid-IR reflectance: an application for aerosol studies[J]. IEEE Transactions on Geo science and Remote Sensing, 1994, 32(3): 672-684.
[5] 亓雪勇, 田庆久. 光学遥感大气校正研究进展[J]. 国土资源遥感, 2005, 25(4): 1-6.
QI Xueyong, TIAN Qingjiu. The advances in the study of atmospheric correction for optical remote sensing[J]. Remote Sensing for Land & Resources, 2005, 25(4): 1-6.
[6] 刘兆亮, 麻金继. 基于MODIS数据反演高反射率地区气溶胶光学厚度的方法研究[J]. 大气与环境光学学报, 2012, 7(5): 358-363.
LIU Zhaoliang, MA Jinji. Retrieval of aerosol optical thickness over bright surface areas using MODIS data[J]. Journal of Atmospheric and Environmental Optics, 2012, 7(5): 358-363.
[7] Turner R E, Spencer M M. Atmospheric Model for Correction of Spacecraft Data[Z/OL]//2002: https://ui.adsabs. harvard.edu/abs/ 1972 rse..conf..895T/abstract.
[8] Gordon H R. Atmospheric correction of ocean color imagery in the earth observing system era[J]. Journal of Geophysical Research, 1997, 102(D14): 17081-17106.
[9] 赵秀娟, 陈长和, 张武, 等. 利用MODIS资料反演兰州地区气溶胶光学厚度[J]. 高原气象, 2005, 24(1): 97-103.
ZHAO Xiujuan, CHEN Changhe, ZHANG Wu, et al. 2005. Retrieval of aerosol optical depth over Lanzhou area using MODIS data[J]. PLATEAU METEOROLOGY, 24(1): 97-103.
[10] 李庆利, 薛永祺, 王建宇, 等. PHI高光谱图像的大气校正算法[J]. 红外与毫米波学报, 2006, 25(4): 316-320.
LI Qingli, XUE Yongqi, WANG Jianyu, et al. Atmospheric correction of PHI hyper spectral imagery[J]. Journal of Infrared and Millimeter Waves, 2006, 25(4): 316-320.
[11] 彭光雄, 何宇华, 李 京, 等. 中巴地球资源02星 CCD图像交叉定标与大气校正研究[J]. 红外与毫米波学报, 2007, 26(1):22-26.
PENG Guangxiong, HE Yuhua, LI Jing, et al. Study on CBERS-2’s CCD image cross calibration and atmospheric correction[J]. Journal of Infrared and Millimeter Waves, 2007, 26(1): 22-26.
[12] 张璐, 施润和, 徐永明, 等. 国产遥感传感器大气层外波段平均太阳光谱辐照度计算[J]. 地球信息科学, 2014, 16(4): 624-627.
ZHANG Lu, SHI Runhe, XU Yongming, et al. Calculation of mean solar exoatmospheric irradiance of several sensors onboard of Chinese domestic remote sensing satellites[J]. Geo-Information Science, 2014, 16(4): 624-627.
[13] Kaufman Yoram J, Andrew E Wald, Lorraine A Remer, et al. The MODIS 2.1 ?m channel-correlation with visible reflectance for use in remote sensing of aerosol[J]. IEEE Trans Geos Remote Sensing, 1997, 35(5):1286-1298.
[14] Robert H, Wayne L, Don L, et al. Cosmic ray and hot pixel removal from STIS CCD images[J]. The HST Calibration Workshop with a New Generation of Instruments, 1997: 120-126.
[15] Anders Ångström. The parameters of atmospheric turbidity[J]. Tellus, 1964, 16(1): 64-76.
[16] 郭广猛. 关于MODIS卫星数据的几何校正方法[J]. 遥感信息, 2002(3): 26-28.
GUO Guangmeng. Geometric calibration of MODIS[J]. Remote Sensing Information, 2002(3): 26-28.
[17] 张怡, 何政伟, 薛东剑. MODIS数据预处理方法[J]. 地理空间信息, 2013, 11(3): 49-50.
ZHANG Yi, HE Zhengwei, XUE Dongjian. The pretreatment method of MODIS data[J]. Geospatial Information, 2013, 11(3): 49-50.
[18] 杜启胜, 刘志平, 王新生, 等. 基于ENVI的MODIS数据预处理方法[J]. 地理空间信息, 2009, 7(4): 98-100.
DU Qisheng, LIU Zhiping, WANG Xinsheng, et al. Method for MODIS data pre-processing based on ENVI[J]. Geospatial Information, 2009, 7(4): 98-100.
[19] 范娇, 郭宝峰, 何宏昌. 基于MODIS数据的杭州地区气溶胶光学厚度反演[J]. 光学学报, 2015, 35(1): 1001-1009.
FAN J, GUO Baofeng, HE Hongchang. Retrieval of aerosol optical thickness with MODIS data over Hangzhou[J]. Acta Optica Sinica, 2015, 35(1): 1001-1009.
[20] 王玲, 田庆久, 李珊珊. 利用MODIS资料反演杭州市500 m分辨率气溶胶光学厚度[J]. 遥感信息, 2010 (3): 50-54.
WANG Ling, TIAN Qingjiu, LI Shanshan. Retrieval of 500 m spatial resolution aerosol optical thickness with MODIS data over Hangzhou[J]. Remote Sensing Information, 2010(3): 50-54.
[21] 任佳, 王振会, 孙林, 等. 基于MODIS数据反演江浙皖地区气溶胶光学厚度[J]. 环境科学与技术, 2010, 33(8): 167-171.
REN Jia, WANG Zhenhui, SUN Lin, et al. Retrieval of aerosol optical depth over Jiangsu-Zhejiang-Anhui areas using MODIS data[J]. Enviromental Science & Technology, 2010, 33(8): 167-171.
[22] 赵志强, 李爱农, 边金虎, 等. 基于改进暗目标法山区HJ CCD影像气溶胶光学厚度反演[J]. 光谱学与光谱分析, 2015, 35(6): 1479-1487.
ZHAO Zhiqiang, LI Ainong, BIAN Jinhu, et al. An improved DDV method to retrieve AOT for HJ CCD image in typical mountainous areas[J]. Spectroscopy and Spectral Analysis, 2015, 35(6): 1479-1487.
[23] 李微, 郭锡杰, 刘远, 等. 基于改进黑暗像元法的环境一号CCD数据海岸带区域大气校正研究[J]. 海洋科学进展, 2015, 33(4): 484-491.
LI Wei, GUO Xijie, LIU Yuan, et al. Improved dark-objects atmospheric correction algorithm for coastal regions based on HJ-1 CCD data[J]. Advances in Marine Science, 2015, 33(4): 484-491.
[24] 郑伟, 曾志远. 遥感图像大气校正的黑暗像元法[J]. 国土资源遥感, 2005(1): 8-11.
ZHENG Wei, ZENG Zhiuan. Dark-object methods for atmospheric correction of remote sensing image[J]. Remote Sensing for Land & Resources, 2005(1): 8-11.

备注/Memo

备注/Memo:
收稿日期:2019-07-17;修订日期:2019-09-19.
作者简介:曹红业(1989-),男,河南巩义人,博士研究生,主要从事定量遥感方面的研究。E-mail:hong1233718@126.com。
更新日期/Last Update: 2020-06-22