[1]孟 真,田昌会,黄思宁,等.一种基于六边形环状结构的双阻带红外频率选择表面[J].红外技术,2020,42(6):528-533.[doi:doi:10.11846/j.issn.1001_8891.202006004]
 MENG Zhen,TIAN Changhui,HUANG Sining,et al.Infrared Frequency Selective Surface with Dual Stopband Based on Hexagonal Ring Structure [J].Infrared Technology,2020,42(6):528-533.[doi:doi:10.11846/j.issn.1001_8891.202006004]
点击复制

一种基于六边形环状结构的双阻带红外频率选择表面
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
42卷
期数:
2020年第6期
页码:
528-533
栏目:
出版日期:
2020-06-23

文章信息/Info

Title:
Infrared Frequency Selective Surface with Dual Stopband
Based on Hexagonal Ring Structure
文章编号:
1001-8891(2020)06-0528-06
作者:
 孟 真田昌会黄思宁范 琦杨百愚田晓霞
空军工程大学 基础部,陕西 西安 710051
Author(s):
MENG ZhenTIAN ChanghuiHUANG SiningFAN QiYANG BaiyuTIAN Xiaoxia
Department of Basic Science, Air Force Engineering University, Xi’an 710051, China
关键词:
中远红外大气窗口频率选择表面传输特性
Keywords:
mid-far infrared atmospheric window frequency selective surface transmission properties
分类号:
TN213
DOI:
doi:10.11846/j.issn.1001_8891.202006004
文献标志码:
A
摘要:
为实现中红外大气窗口(3~5 mm)和远红外大气窗口(8~14 mm)的低红外透过率,设计了一种双频红外频率选择表面(FSS),该FSS由两个外侧六边形内侧圆形的环状结构组成。CST电磁软件仿真结果表明,该FSS在中远红外两个大气窗口内的平均透过率低于5%,实现了中远红外的双阻带。采用表面电流分析法分析了该FSS的滤波机理,该结构通过屏内单元间的耦合形成对称电流模式,使散射场增强,透过率降低,形成了相应波段的阻带。仿真结果表明该结构具有极化稳定性,且对于不同入射角的TE波具有良好的角度稳定性,介质层厚度和损耗角正切值对传输特性影响较小,介电常数对其影响较大。
Abstract:
To get low transmittance in mid-infrared atmospheric windows (3-5 mm) and far-infrared atmospheric windows (8-14 mm), we designed a double frequency infrared frequency selective surface (FSS). This FSS is composed of two ring structures – the outer side of the structure is a hexagon and inner side is a circle. The simulation results of CST electromagnetic software show that the average transmittance of the FSS in both mid and far infrared atmospheric windows is less than 5%; in addition, the two stopbands in infrared wavelengths are realized. The filtering mechanism of the frequency selective surface is analyzed based on the method of surface current model analysis. The structure forms a symmetrical current mode through the coupling between the unit in the screen, which enhances the scattering-field and decreases the transmission rate, forming a stopband in the corresponding band. The simulation results show that the structure has polarization stability and good angle stability for TE electromagnetic waves with different incident angles. In addition, the dielectric layer thickness and loss tangent have little effect on transmission properties, and dielectric constant has a great effect on transmission properties.

参考文献/References:

[1] 杨照金. 军用目标伪装隐身技术概论[J]. 应用光学, 2014, 35(3): 530.
YANG Zhaojin. Introduction to camouflage stealth technology for military targets[J]. Applied Optics, 2014, 35(3): 530.
[2] 付伟. 红外隐身原理及其应用技术[J]. 红外与激光工程, 2002, 31(1): 88-93.
FU Wei. Principle and application technology of IR stealth[J]. Infrared and Laser Engineering, 2002, 31(1): 88-93.
[3] 蒋耀庭, 王跃. 红外隐身技术与发展[J]. 红外技术, 2003, 25(5): 7-9.
JIANG Yaoting, WANG Yue. Infrared stealth technology and development[J]. Infrared Technology, 2003, 25(5): 7-9.
[4] Munk B A. Frequency Selective Surface: Theory and Design[M]. New York: Wiley, 2000.
[5] Behdad N, Mudar A J, Salehi M. A low-profile third-order bandpass frequency selective surface[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(2): 460-466.
[6] 陈晓莉, 田昌会, 王斌科, 等. 基于六边形环状结构的远红外频率选择表面[J]. 红外技术, 2018, 40(6): 551-555.
CHEN Xiaoli, TIAN Changhui, WANG Binke, et al. A far-infrared frequency selective surface based on hexagonal loop structure[J]. Infrared Technology, 2018, 40(6): 551-555.
[7] 许志永, 张厚, 姜聿焘, 等. 一种新型双阻带频率选择表面的设计[J]. 空军工程大学学报: 自然科学版, 2014, 15(3): 49-52.
XU Zhiyong, ZHANG Hou, JIANG Yutao, et al. A design o f frequency selective surface on a novel dual stop band[J]. Journal of Air Force Engineering University: Natural Science Edition, 2014, 15(3): 49-52.
[8] 穆鑫, 王斌科, 田昌会, 等. 周期性结构对远红外辐射抑制特性分析[J]. 激光与红外, 2016, 46(9): 1091-1095.
MU Xin, WANG Binke, TIAN Changhui, et al. Suppression analysis of periodic structure on radiation characteristics in far infrared[J]. Laser & Infrared, 2016, 46(9): 1091-1095.
[9] 吴翔, 裴志斌, 屈绍波, 等. 基于超材料等效介质理论的带通频率选择表面设计及验证[J]. 红外与毫米波学报, 2011, 30(5): 469-474.
WU Xiang, PEI Zhibin, QU Shaobo, et al. Design and experimental verification of band-pass frequency selective surface based on metamaterial effective medium theory[J]. Journal of Infrared and Millimeter Wave, 2011, 30(5): 469-474.
[10] Puscasu I, Schaich W L, Boreman G D. Modeling parameters for the spectral behavior of infrared frequency-selective surfaces[J]. Applied Optics, 2001, 40(1):118.
[11] Bossard J A, TANG Y, Werner D H, et al. Genetically designed multiband metallodielectric frequency selective surface filters for the mid-infrared[C]//Antennas and Propagation Society International Symposium of IEEE, 2007: 3404-3407.
[12] 王斌科, 王可欣, 田昌会, 等. 一种新型红外频率选择表面[J]. 红外技术, 2019, 41(1): 22-26.
WANG Binke, WANG Kexin, TIAN Changhui, et al. A novel infrared frequency selective surface[J]. Infrared Technology, 2019, 41(1): 22-26.
[13] Bossard J A, Werner D H, Mayer T S, et al. The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications[J]. IEEE Transactions on Antennas & Propagation, 2006, 54(4): 1265-1276.
[14] Shelton D J, Ginn J C, Boreman G D. Bandwidth variations in conformal infrared frequency selective surfaces[C]//IEEE Antennas and Propagation Society International Symposium, 2007: 3976-3979.
[15] Peters D W, Hadley G R, Cruzcabrera A A, et al. Infrared frequency selective surfaces for sensor applications[C]//Proceedings of SPIE, 2009, 7298: 72983L-72983L-8.
[16] Memarzadeh B, Mosallaei H. Layered plasmonic tripods: an infrared frequency selective surface nanofilter[J]. Journal of the Optical Society of America B, 2012, 29(29):2347-2351.
[17] HUANG J, WU T K, Lee S W. Tri-band frequency selective surfaces with circular ring elements[J]. IEEE Transactions on Antennas and Propagation, 1994, 42(2): 166-175.
[18] 王可欣, 王斌科, 田昌会, 等. Au/VO_2结构可调控红外吸收器[J]. 空军工程大学: 自然科学版, 2018, 19(5): 36-40.
WANG Kexin, WANG Binke, TIAN Changhui, et al. Tunable infrared absorber based on Au/VO_2 structure[J]. Journal of Air Force Engineering University: Natural Science Edition, 2018, 19(5): 36-40.
[19] 郑麟, 屈绍波, 闫明宝, 等. 基于LC耦合机制调谐设计薄屏宽带频率选择表面[J]. 微波学报, 2016, 32(3): 1-5.
ZHENG Lin, QU Shaobo, YAN Mingbao, et al. Design broadband-pass frequency selective surface utilizing a thin substrate based on LC couplings[J]. Journal of Microwaves, 2016, 32(3): 1-5.

相似文献/References:

[1]车志新,田昌会,王斌科,等.一种双阻带红外频率选择表面[J].红外技术,2017,39(7):594.[doi:10.11846/j.issn.1001_8891.201707002]
 CHE Zhixin,TIAN Changhui,WANG Binke,et al.An Infrared Frequency Selective Surface with Dual Stopband[J].Infrared Technology,2017,39(6):594.[doi:10.11846/j.issn.1001_8891.201707002]

备注/Memo

备注/Memo:
收稿日期:2019-07-10;修订日期:2019-10-29.
作者简介:孟真(1995-),男,山东肥城人,硕士研究生,主要从事红外辐射特性与探测技术研究。E-mail:mz2917397518@163.com。
通信作者:田昌会(1963-),男,陕西合阳人,教授,博士,主要从事红外辐射特性与探测技术研究。E-mail:tchtyb001@163.com。
基金项目:陕西省自然科学基础研究计划资助项目(2019JZ-40)。
更新日期/Last Update: 2020-06-22