[1]艾志伟,嵇建波,李静,等.快速反射镜状态模型构建方法及其控制系统设计[J].红外技术,2020,42(1):040-45.[doi:10.11846/j.issn.1001_8891.202001006]
 AI Zhiwei,JI Jianbo,LI Jing,et al.State Model Construction Method for Fast Steering Mirror and Its Control System Design[J].Infrared Technology,2020,42(1):040-45.[doi:10.11846/j.issn.1001_8891.202001006]
点击复制

快速反射镜状态模型构建方法及其控制系统设计
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
42卷
期数:
2020年第1期
页码:
040-45
栏目:
出版日期:
2020-01-23

文章信息/Info

Title:
State Model Construction Method for Fast Steering Mirror and Its Control System Design

文章编号:
1001-8891(2020)01-0040-06
作者:
艾志伟嵇建波李静黄书童
桂林航天工业学院
Author(s):
AI ZhiweiJI JianboLI JingHUANG Shutong
Guilin University of Aerospace Technology
关键词:
快速反射镜状态模型渐进跟踪干扰抑制
Keywords:
fast steering mirror state model progressive tracking disturbance suppression
分类号:
TP273
DOI:
10.11846/j.issn.1001_8891.202001006
文献标志码:
A
摘要:
为减少快速反射镜状态空间建模过程中所需的结构参数数量,提出了一种基于系统辨识的状态模型构建方法,采用该方法建立状态模型时只需使用音圈电阻和电感两个结构参数。基于状态模型,设计了一套由降阶观测器、状态反馈、内模和镇定补偿器构成的组合控制系统,利用状态反馈完成对内模和镇定补偿器的设计,通过设计降阶观测器实现对电流和角速度的获取,组合系统可同时实现对输入信号的渐进跟踪和干扰的抑制。在SIMULINK中建立仿真模型,仿真结果显示,不考虑干扰作用时,相较于不完全微分PID(Proportion Integration Differentiation)控制系统,组合系统的调节时间下降了53.6%,超调量上升了131.2%;加入干扰信号后,不完全微分PID控制系统的动稳态性能有明显下降,而组合系统的输出性能基本不受影响。仿真结果验证了理论分析的正确性。
Abstract:
To reduce structural parameters needed in the process of the state space modeling of a fast steering mirror (FSM), a modeling method based on system identification is proposed. Only two structural parameters, namely, coil resistance and inductance, are needed when using this modeling method. Based on the state model, a set of combined control systems consisting of a reduced-order observer, state feedback, an internal model, and a stabilization compensator were designed; the internal model and stabilization compensator were designed by using state feedback. Furthermore, current and angular velocity can be obtained using a reduced-order observer. The combined system can progressively track of input signals and suppress disturbances; the simulation model was built using SIMULINK. The simulation results show that, compared with the incomplete differential proportional integral derivative (PID) control system, the setting time decreases by 53.6% and the overshoot increases by 131.2% without considering the disturbance in the composite system. The dynamic and steady-state performance of the incomplete differential PID control system decreases significantly after adding the disturbance signal, while the composite system is maintained. The simulation results verify the correctness of the theoretical analysis.

参考文献/References:

[1] Kluk D J, Boulet M T, Trumper D L. A high-bandwidth, high-precision, two-axis steering mirror with moving iron actuator[J]. Mechatronics, 2012, 22: 257-270.
[2] 赵磊, 纪明, 赵振海, 等. 舰载激光武器稳定平台粗精复合控制[J]. 激光与红外, 2019, 49(1): 86-92.
ZHAO Lei, JI Ming, ZHAO Zhenhai, et, al. Primary-precise compounded control for stabilized platform in shipborne laser weapon[J]. Laser and Infrared, 2019, 49(1): 86-92.
[3] 吕世良, 刘金国, 周怀得, 等. 星载红外探测器快速反射镜控制系统设计[J]. 红外与激光工程, 2017, 46(9): 102-107.
LYU Shiliang, LIU Jinguo, ZHOU Huaide, et al. Design of control system for fast steering mirror of infrared detector based on satellite[J]. Infrared and Laser Engineering, 2017, 46(9): 102-107.
[4] WANG Kaidi, SU Xiuqin, LI Zhe, et al. Time-frequency characteristics optimal control of fast steering mirror for image motion compensation[J]. Infrared and Laser Engineering, 2018, 47(S1): 120-126.
[5] 鲁亚飞, 范大鹏, 范世珣, 等. 快速反射镜两轴柔性支承设计[J]. 光学精密工程, 2010, 18(12): 2574-2582.
LU Yafei, FAN Dapeng, FAN Shixun, et, al. Design of two-axis elastic support for fast steering mirror[J]. Optics and Precision Engineering, 2010, 18(12): 2574-2582.
[6] 彭树萍, 于洪君, 王伟国, 等. 新型快速反射镜伺服系统设计[J]. 红外与激光工程, 2014, 43(5): 1610-1615.
PENG Shuping, YU Hongjun, WANG Weiguo, et al. Design of servo system for novel fast-steering mirror[J]. Infrared and Laser Engineering, 2014, 43(5): 1610-1615.
[7] 王帅, 曹玉岩. 音圈电机型快速反射镜的驱动控制系统设计[J]. 电子测量与仪器学报, 2017, 31(7): 1115-1121.
WANG Shuai, CAO Yuyan. Design of control system for fast steering mirror driven by voice coil actuator[J]. Journal of Electronic Measurement and Instrumentation, 2017, 31(7): 1115 - 1121.
[8] DENG Chao, TANG Tao, MAO Yao, et al. Enhanced disturbance observer based on acceleration measurement for fast steering mirror system[J]. IEEE Photonics Journal, 2017, 9(3): 1-11.
[9] TIAN Jing, YANG Wenshu, PENG Zhenming. Application of MEMS Accelerometers and Gyroscopes in Fast Steering Mirror Control Systems[J]. Sensors, 2016, 440: 1-13.
[10] 桂潇怡, 李伟鹏, 郑新涛, 等. 基于MEMS加速度计的快速反射镜复合控制[J]. 航天控制, 2018, 36(2): 30-36, 41.
GUI Xiaoyi, LI Weipeng, ZHENG Xintao, et al. Composite Control of Fast Steering Mirror Based on MEMS Accelerometer[J]. Aerospace Control, 2018, 36(2): 30-36, 41.

相似文献/References:

[1]魏文军,赵雪童.基于改进自抗扰的快速反射镜控制研究[J].红外技术,2018,40(11):1071.[doi:10.11846/j.issn.1001_8891.201811009]
 WEI Wenjun,ZHAO Xuetong.Fast Steering Mirror Control Based on Improved Active Disturbance Rejection[J].Infrared Technology,2018,40(1):1071.[doi:10.11846/j.issn.1001_8891.201811009]
[2]张 超,于 洵,马 群,等.基于FSM的Z型薄片式柔性结构力学性能分析[J].红外技术,2019,41(2):157.[doi:10.11846/j.issn.1001_8891.201902009]
 ZHANG Chao,YU Xun,MA Qun,et al.Mechanical Performance Analysis of Z-flake Flexible Structure Based on FSM[J].Infrared Technology,2019,41(1):157.[doi:10.11846/j.issn.1001_8891.201902009]
[3]艾志伟,嵇建波,李 静,等.装配误差对快速反射镜控制精度影响及其抑制方法[J].红外技术,2019,41(8):705.[doi:10.11846/j.issn.1001_8891.201908003]
 AI Zhiwei,JI Jianbo,LI Jing,et al. Influence and Suppression of Mirror Assembly Error on Control Precision of Fast Steering Mirror [J].Infrared Technology,2019,41(1):705.[doi:10.11846/j.issn.1001_8891.201908003]

备注/Memo

备注/Memo:
收稿日期:2019-07-09;修订日期:2019-12-31.
作者简介:艾志伟(1992-),男,硕士,助教,主要研究方向为光电跟踪控制。E-mail:aizhiwei752@163.com。
基金项目:广西高校中青年教师科研基础能力提升项目(2019KY0793)。

更新日期/Last Update: 2020-01-20