[1]廖小华,陈念年,蒋勇,等.改进的卷积神经网络红外图像超分辨率算法[J].红外技术,2020,42(1):075-80.[doi:10.11846/j.issn.1001_8891.202001011]
 LIAO Xiaohua,CHEN Niannian,JIANG Yong,et al.Infrared Image Super-resolution Using Improved Convolutional Neural Network[J].Infrared Technology,2020,42(1):075-80.[doi:10.11846/j.issn.1001_8891.202001011]
点击复制

改进的卷积神经网络红外图像超分辨率算法
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
42卷
期数:
2020年第1期
页码:
075-80
栏目:
出版日期:
2020-01-23

文章信息/Info

Title:
Infrared Image Super-resolution Using Improved Convolutional Neural Network
文章编号:
1001-8891(2020)01-0075-06
作者:
廖小华陈念年蒋勇祁世风
西南科技大学 计算机科学与技术学院
Author(s):
LIAO XiaohuaCHEN NiannianJIANG YongQI Shifeng
Southwest University of Science and Technology, College of Computer Science and Technology
关键词:
红外图像超分辨率深度学习灰度变换
Keywords:
infrared image super-resolution deep learning gray scale transform
分类号:
TP39
DOI:
10.11846/j.issn.1001_8891.202001011
文献标志码:
A
摘要:
基于卷积神经网络的图像超分辨率算法可以分为图像尺寸放大和图像细节恢复/增强两个步骤,在细节恢复过程中,卷积层直接从输入图像中学习特征并将该特征作为下一个卷积层的输入数据。为了加强输入图像和卷积层各通道图像的特征表达能力,提出了一种新的卷积神经网络算法,该算法对输入图像和通道图像进行选择性灰度变换而增强特征表达的能力。实验结果表明,在公共红外图像数据集和实验室采集的红外图像数据集上,所提方法的超分辨率重建效果均优于当前的几种典型算法,能够恢复的细节信息更多。
Abstract:
Image super-resolution algorithms based on convolution neural network can be classified into two steps: image size enlargement and image detail recovery/enhancement. During the detail recovery process, the convolution layer learns the feature directly from the input image and takes the feature as the input data of the next convolution layer. In this study, a novel convolution neural network algorithm is proposed to enhance the feature expression ability of input and channel images in convolution layers by the selective gray transformation of the input and channel images. The experimental results demonstrate that the super-resolution reconstruction effect of the proposed method is superior to several typical algorithms in both conventional infrared images and the infrared images collected from our laboratory, and the proposed method can be applied to recover more details.

参考文献/References:

[1] 陈钱. 红外图像处理技术现状及发展趋势[J]. 红外技术, 2013, 35(6): 311-318.
CHEN Qian. The Status and Development Trend of Infrared Image Processing Technology[J]. Infrared Technology, 2013, 35(6): 311-318.
[2] 江静, 张雪松. 图像超分辨率重建算法综述[J]. 红外技术, 2012, 34(1): 24-30.
JIANG Jing, ZHANG Xuesong. A Review of Super-resolution Reconstruction Algorithms[J]. Infrared Technology, 2012, 34(1): 24-30.
[3] 李方彪, 何昕, 魏仲慧, 等. 生成式对抗神经网络的多帧红外图像超分辨率重建[J]. 红外与激光工程, 2018, 47(2): 26-33.
LI Fangbiao, HE Xin, WEI Zhonghui, et al. Multiframe infrared image super-resolution reconstruction using generative adversarial networks[J]. Infrared and Laser Engineering, 2018, 47(2): 26-33.
[4] YUAN Q, ZHANG L, SHEN H. Regional spatially adaptive total variation super-resolution with spatial information filtering and clustering[J]. IEEE Transactions on Image Processing, 2013, 22(6): 2327-2342.
[5] ZHOU F, YANG W M, LIAO Q M. Interpolation-based image super-resolution using multisurface fitting [J]. IEEE Transactions on Image Processing, 2012, 21(7): 3312-3318.
[6] Simon Baker, Takeo Kanad. Limits on super -resolution and how to break them[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(9): 1167-1183.
[7] YANG J C, Wright J, HUANG T S, et al. Image super-resolution via sparse representation[J]. IEEE Signal Processing Magazine, 2010, 19(11): 2861-2873.
[8] DONG C, Loy C C, HE K, et al. Image Super-Resolution Using Deep Convolutional Networks[J]. IEEE Trans Pattern Anal Mach Intell., 2014, 38(2):295-307.
[9] Kim J, Kwon Lee J, Lee K M. Accurate image superresolution using very deep convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1646-1654.
[10] Kim J, Kwon Lee J, Lee K M. Deeply-recursive convolutional network for image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1637-1645.
[11] TAI Y, YANG J, LIU X. Image Super-Resolution via Deep Recursive Residual Network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 2790-2798.
[12] JIA X Y, XU X M, CAI B. (2018) Single Image Super-Resolution Using Multi-scale Convolutional Neural Network[C]//Pacific Rim Conference on Multimedia, 2017: 149-157.
[13] Haris M, Shakhnarovich G, Ukita N. Deep back-projection networks for super-resolution[C]//Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2018: 1664-1673.
[14] 孔琛, 孙坚. 线性灰度变换算法在红外测温系统中应用[J]. 红外技术, 2008, 30(8): 465-467.
KONG Chen, SUN Jian. Application of the Linear Gray Level Transformation Method in Infrared Temperature Measurement System[J]. Infrared Technology, 2008, 30(8):465-467.
[15] 徐军, 梁昌洪, 张建奇. 一种红外图像增强的新方法[J]. 西安电子科技大学学报, 2000(5): 546-549.
XU Jun, LIANG Changhong, ZHANG Jianqi. A new approach to IR image enhancement[J]. Journal of Xidian University, 2000(5): 546-549.?

相似文献/References:

[1]郭水旺,王宝红,季钢,等.基于基因表达式编码算法的红外图像轮廓提取[J].红外技术,2013,35(01):038.
 GUO Shui-wang,WANG Bao-hong,JI Gang,et al. Infrared Image Contour Extraction Based on the Gene Expression Coding Algorithm[J].Infrared Technology,2013,35(1):038.
[2]孙爱平,皮冬明,安长亮,等. 光机装校阶段红外与可见光图像配准技术研究[J].红外技术,2013,35(01):050.
 SUN Ai-ping,PI Dong-ming,AN Chang-liang,et al. Study on IR/Visible Image Registration for Lens Assembly[J].Infrared Technology,2013,35(1):050.
[3]路建方,王新赛,肖志洋,等. 基于FPGA的红外图像自适应分段线性增强算法[J].红外技术,2013,35(02):102.
 LU Jian-fang,WANG Xin-sai,XIAO Zhi-yang,et al. An Adaptive Piecewise Linear Enhance Algorithm for Infrared Image Based on FPGA[J].Infrared Technology,2013,35(1):102.
[4]徐铭蔚,李郁峰,陈念年,等.多尺度融合与非线性颜色传递的微光与红外图像染色[J].红外技术,2012,34(12):722.
 XU Ming-wei,LI Yu-feng,CHEN Nian-nian,et al. Coloration of the Low Light Level and Infrared Image Using Multi-scale Fusion and Nonlinear Color Transfer Technique[J].Infrared Technology,2012,34(1):722.
[5]纪利娥,杨风暴,王志社,等. 基于边缘图像和SURF特征的可见光与红外图像的匹配算法[J].红外技术,2012,34(11):629.
 JI Li-e,YANG Feng-bao,WANG Zhi-she,et al.Visible and Infrared Image Matching Algorithm Based on Edge Image and SURF Features[J].Infrared Technology,2012,34(1):629.
[6]张红辉,罗海波,余新荣,等. 改进的神经网络红外图像非均匀性校正方法[J].红外技术,2013,35(04):232.
[7]张强,侯宁,刘红燕. 红外焦平面阵列非均匀性多点实时压缩校正研究[J].红外技术,2012,34(10):593.
 ZHANG Qiang,HOU Ning,LIU Hong-yan. Study on Real-time Multi-points Compressive Nonuniformity Correction of IRFPA[J].Infrared Technology,2012,34(1):593.
[8]路建方,王新赛,肖志洋,等. 基于灰度分层的FPGA红外图像伪彩色实时化研究[J].红外技术,2013,35(05):285.
 LU Jian-fang,WANG Xin-sai,XIAO Zhi-yang,et al. The Research on Real-time Pseudo-color of Infrared Image in FPGA Based on Gray Delaminating[J].Infrared Technology,2013,35(1):285.
[9]陈钱.红外图像处理技术现状及发展趋势[J].红外技术,2013,35(06):311.
 CHEN Qian.The Status and Development Trend of Infrared Image Processing Technology[J].Infrared Technology,2013,35(1):311.
[10]谭东杰,张安.基于局部直方图规定化的红外图像非均匀性校正[J].红外技术,2013,35(06):325.
 TAN Dong-jie,ZHANG An.Non-uniformity Correction Based on Local Histogram Specification[J].Infrared Technology,2013,35(1):325.
[11]姚 敏,周 勤.一种低匹配误差敏感度的红外图像超分辨率算法[J].红外技术,2016,38(10):864.[doi:10.11846/j.issn.1001_8891.201610010]
 YAO Min,ZHOU Qin.An Infrared Images Super-resolution Algorithm with Low Registration Error Sensitivity [J].Infrared Technology,2016,38(1):864.[doi:10.11846/j.issn.1001_8891.201610010]

备注/Memo

备注/Memo:
收稿日期:2019-07-08;修订日期:2019-12-17.
作者简介:廖小华(1991-),男,湖南怀化人,硕士研究生,主要研究方向为数字图像处理。E-mail:xiaohualiao0319@163.com。
通信作者:陈念年(1977-),男,硕士,副教授,硕士研究生导师,主要从事机器视觉高精密测量、图像处理方向的研究。E-mail:cnnnet@qq.com
基金项目:西南科技大学研究生创新基金(19ycx0054)。

更新日期/Last Update: 2020-01-20