[1]杨涛,戴军,吴钟建,等.基于深度学习的红外舰船目标识别[J].红外技术,2020,42(5):426-433.[doi:10.11846/j.issn.1001_8891.202005003]
 YANG Tao,DAI Jun,WU Zhongjian,et al.Target Recognition of Infrared Ship Based on Deep Learning[J].Infrared Technology,2020,42(5):426-433.[doi:10.11846/j.issn.1001_8891.202005003]
点击复制

基于深度学习的红外舰船目标识别
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
42卷
期数:
2020年第5期
页码:
426-433
栏目:
出版日期:
2020-05-23

文章信息/Info

Title:
Target Recognition of Infrared Ship Based on Deep Learning
文章编号:
1001-8891(2020)05-0426-08
作者:
杨涛戴军吴钟建金代中周国家
西南技术物理研究所
Author(s):
YANG TaoDAI JunWU ZhongjianJIN DaizhongZHOU Guojia
Institute of Southwest Technical Physics
关键词:
红外图像目标识别深度学习YOLOv3
Keywords:
infrared image target recognition deep learning YOLOv3
分类号:
TN957.52,TP18
DOI:
10.11846/j.issn.1001_8891.202005003
文献标志码:
A
摘要:
本文采用深度学习技术中的YOLOv3(You Only Look Once Version 3)目标识别算法对红外成像仪从海面采集的红外图像中舰船进行识别。红外成像仪采集图像的频率高达50帧/s,为了能减少网络计算时间,本文借鉴YOLOv3的一些思想,采用全卷积结构和LeakReLU激活函数重新设计一个轻量化的基础网络,以此加快检测速度。输出层根据采集回来的红外图像的特点采用Softmax算法回归,在提高检测速度的同时,也兼顾了检测精度。
Abstract:
In this study, the You Only Look Once Version 3 (YOLOv3) target recognition algorithm in deep learning technology is used to identify the ship in an infrared image collected using an infrared imager from the sea surface. The infrared imager captures images at a frequency of up to 50 frames per second. To reduce network computing time, a few ideas are generated based on YOLOv3; additionally, a full convolution structure and the LeakReLU activation function are used to redesign a lightweight basic network to accelerate detection. The output layer uses the softmax algorithm to regress according to the characteristics of the collected infrared images, which improves the detection speed and accounts for detection accuracy.

参考文献/References:

本文采用深度学习技术中的YOLOv3(You Only Look Once Version 3)目标识别算法对红外成像仪从海面采集的红外图像中舰船进行识别。红外成像仪采集图像的频率高达50帧/s,为了能减少网络计算时间,本文借鉴YOLOv3的一些思想,采用全卷积结构和LeakReLU激活函数重新设计一个轻量化的基础网络,以此加快检测速度。输出层根据采集回来的红外图像的特点采用Softmax算法回归,在提高检测速度的同时,也兼顾了检测精度。

相似文献/References:

[1]郭水旺,王宝红,季钢,等.基于基因表达式编码算法的红外图像轮廓提取[J].红外技术,2013,35(01):038.
 GUO Shui-wang,WANG Bao-hong,JI Gang,et al. Infrared Image Contour Extraction Based on the Gene Expression Coding Algorithm[J].Infrared Technology,2013,35(5):038.
[2]孙爱平,皮冬明,安长亮,等. 光机装校阶段红外与可见光图像配准技术研究[J].红外技术,2013,35(01):050.
 SUN Ai-ping,PI Dong-ming,AN Chang-liang,et al. Study on IR/Visible Image Registration for Lens Assembly[J].Infrared Technology,2013,35(5):050.
[3]路建方,王新赛,肖志洋,等. 基于FPGA的红外图像自适应分段线性增强算法[J].红外技术,2013,35(02):102.
 LU Jian-fang,WANG Xin-sai,XIAO Zhi-yang,et al. An Adaptive Piecewise Linear Enhance Algorithm for Infrared Image Based on FPGA[J].Infrared Technology,2013,35(5):102.
[4]徐铭蔚,李郁峰,陈念年,等.多尺度融合与非线性颜色传递的微光与红外图像染色[J].红外技术,2012,34(12):722.
 XU Ming-wei,LI Yu-feng,CHEN Nian-nian,et al. Coloration of the Low Light Level and Infrared Image Using Multi-scale Fusion and Nonlinear Color Transfer Technique[J].Infrared Technology,2012,34(5):722.
[5]纪利娥,杨风暴,王志社,等. 基于边缘图像和SURF特征的可见光与红外图像的匹配算法[J].红外技术,2012,34(11):629.
 JI Li-e,YANG Feng-bao,WANG Zhi-she,et al.Visible and Infrared Image Matching Algorithm Based on Edge Image and SURF Features[J].Infrared Technology,2012,34(5):629.
[6]张红辉,罗海波,余新荣,等. 改进的神经网络红外图像非均匀性校正方法[J].红外技术,2013,35(04):232.
[7]张强,侯宁,刘红燕. 红外焦平面阵列非均匀性多点实时压缩校正研究[J].红外技术,2012,34(10):593.
 ZHANG Qiang,HOU Ning,LIU Hong-yan. Study on Real-time Multi-points Compressive Nonuniformity Correction of IRFPA[J].Infrared Technology,2012,34(5):593.
[8]路建方,王新赛,肖志洋,等. 基于灰度分层的FPGA红外图像伪彩色实时化研究[J].红外技术,2013,35(05):285.
 LU Jian-fang,WANG Xin-sai,XIAO Zhi-yang,et al. The Research on Real-time Pseudo-color of Infrared Image in FPGA Based on Gray Delaminating[J].Infrared Technology,2013,35(5):285.
[9]王世亮,杨帆,张志伟,等.基于目标红外特征与SIFT特征相结合的目标识别算法[J].红外技术,2012,34(09):503.
 WANG Shi-liang,YANG Fan,ZHANG Zhi-wei,et al.A Target Recognition Method Based on Infrared Features and SIFT[J].Infrared Technology,2012,34(5):503.
[10]陈钱.红外图像处理技术现状及发展趋势[J].红外技术,2013,35(06):311.
 CHEN Qian.The Status and Development Trend of Infrared Image Processing Technology[J].Infrared Technology,2013,35(5):311.
[11]郑坤鹏,王普凯,周国印,等.基于MATLAB的红外图像中坦克特征量的提取方法[J].红外技术,2010,32(11):625.
 ZHENG Kun-peng,ZHOU Guo-yin,WANG Pu-kai,et al.The Extracting Method of Tank FeatureVector from Infrared Images Based on MATLAB[J].Infrared Technology,2010,32(5):625.

备注/Memo

备注/Memo:
收稿日期:2019-06-18;修订日期:2019-07-22.
作者简介:杨涛(1992-),男,硕士研究生,主要从事目标检测、深度学习方面的研究。E-mail:304778654@qq.com。
通信作者:吴钟建(1967-),硕士,副研究员,硕士导师,主要从事目标跟踪、目标检测等方面的研究。E-mail:wjz209@126.com。

更新日期/Last Update: 2020-05-19