[1]李唐兵,胡锦泓,周求宽.基于Lévy飞行的改进飞蛾扑火算法优化红外图像分割[J].红外技术,2020,42(9):846-854.[doi:10.11846/j.issn.1001_8891.202009006]
 LI Tangbing,HU Jinhong,ZHOU Qiukuan.Improved Moth-Flame Optimization Algorithm Based on Lévy Flight to Optimize Infrared Image Segmentation[J].Infrared Technology,2020,42(9):846-854.[doi:10.11846/j.issn.1001_8891.202009006]
点击复制

基于Lévy飞行的改进飞蛾扑火算法优化红外图像分割
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
42卷
期数:
2020年第9期
页码:
846-854
栏目:
出版日期:
2020-09-23

文章信息/Info

Title:
Improved Moth-Flame Optimization Algorithm Based on Lévy Flight to Optimize Infrared Image Segmentation

文章编号:
1001-8891(2020)09-0846-09
作者:
李唐兵1胡锦泓2周求宽1
1. 国网江西省电力公司电力科学研究院;
2. 国网上海浦东供电公司
Author(s):
LI Tangbing1HU Jinhong2ZHOU Qiukuan1
1. Power science research institute of state grid Jiangxi electric power company;
2. State grid Shanghai Pudong power supply company

关键词:
红外图像IMFO故障诊断多阈值
Keywords:
infrared image IMFO fault diagnosis multilevel thresholding
分类号:
TN219
DOI:
10.11846/j.issn.1001_8891.202009006
文献标志码:
A
摘要:
针对使用传统阈值分割方法对电力设备故障诊断效率低、精度低的问题,使用智能算法优化Otsu算法对红外图像进行阈值分割再进行故障诊断。根据基本飞蛾扑火(Moth-Flame Optimization,MFO)算法缺点提出改进飞蛾扑火算法(Improved Moth-Flame Optimization Algorithm,IMFO)并将其应用红外图像分割中,通过对比粒子群算法(Particle Swarm Optimization,PSO)、生物地理算法(Biogeography-Based Optimization,BBO)、基本飞蛾扑火算法红外图像分割效果,表明改进算法取得成功。提出一种通过温度区域对红外图像进行多阈值分割的方法,能够准确确定每个部分的温度范围,从而保证设备的正常运行。
Abstract:
To solve the problem of low efficiency and accuracy of power equipment fault diagnosis using the traditional threshold segmentation method, an intelligent algorithm, the optimized Otsu algorithm was used for threshold segmentation of infrared images for fault diagnosis. According to the shortcomings of the basic moth-flame optimization, the improved moth-flame optimization algorithm is proposed. It was applied to the infrared image segmentation. By comparing its infrared image segmentation results with those of the particle swarm optimization, biogeography-based optimization, and moth–flame optimization algorithms, it was shown that the improved algorithm is successful. A multithreshold segmentation method for infrared images through the temperature region is proposed. It can accurately determine the temperature range of each part and ensure normal operation of the equipment.

参考文献/References:

[1] Sarkar S, Das S, Chaudhuri S S. A multilevel color image thresholding scheme based on minimum cross entropy and differential evolution[J]. Pattern Recognition Letters, 2015, 54: 27-35.
[2] 杨兆龙, 刘秉瀚. 基于改进差分进化算法的多阈值图像分割[J]. 计算机系统应用, 2016, 25(12): 199-203.
YANG Zhaolong, LIU Binghan. Multi-threshold image segmentation based on improved differential evolution algorithm[J]. Computer Systems & Applications, 2016, 25(12):199-203.
[3] Sanyal N, Chatterjee A, Munshi S. An adaptive bacterial foraging algorithm for fuzzy entropy based image segmentation[J]. Expert Systems with Applications, 2011, 38(12): 15489-15498.
[4] LIU Y, HU K, ZHU Y, et al. Color image segmentation using multilevel thresholding- cooperative bacterial foraging algorithm[C]//IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems, 2015: 181-185.
[5] Pare S, Bhandari A K, Kumar A, et al. A new technique for multilevel color image thresholding based on modified fuzzy entropy and Lévy flight firefly algorithm[J]. Computers & Electrical Engineering, 2018, 70: 476-495.
[6] Horng M H, Jiang T W . Multilevel Image Thresholding Selection Based on the Firefly Algorithm[C]//Ubiquitous Intelligence & Computing and 7th International Conference on Autonomic & Trusted Computing, IEEE, 2010: 175-180.
[7] Mohd Noor M H, Ahmad A R, Hussain Z, et al. Multilevel thresholding of gel electrophoresis images using firefly algorithm[C]//IEEE International Conference on Control System, Computing and Engineering, 2011: 18-21.
[8] HE L, HUANG S. Modified firefly algorithm based multilevel thresholding for color image segmentation[J]. Neurocomputing, 2017, 240: 152-174.
[9] ZHANG S, JIANG W, Satoh S. Multilevel Thresholding Color Image Segmentation Using a Modified Artificial Bee Colony Algorithm[J]. IEICE Transactions on Information and Systems, 2018, E101.D(8): 2064-2071.
[10] Horng M-H. Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation[J]. Expert Systems with Applications, 2011, 38(11): 13785-13791.
[11] Karaboga D, Akay B. A comparative study of Artificial Bee Colony algorithm[J]. Applied Mathematics and Computation, 2009, 214(1): 108–132.
[12] 高宏进, 王力, 龚维印, 等. 基于改进CS算法的二维Ostu快速图像分割[J]. 通信技术, 2017, 50(12): 2698-2703.
GAO Hongjin, WANG Li, GONG Weiyin, et al. 2d Ostu fast image segmentation based on improved CS algorithm[J]. Communications Technology, 2017, 50(12): 2698-2703.
[13] 杨晓, 胡可杨, 汪烈军, 等. 基于布谷鸟优化的三维OTSU图像分割算法[J]. 新疆大学学报: 自然科学版, 2017, 34(4): 452-458.
YANG Xiao, HU Keyang, WANG Lijun, et al. 3d OTSU image segmentation algorithm based on cuckoo optimization[J]. Journal of Xinjiang University: Natural Science Edition, 2017, 34(4): 452-458.
[14] 卫洪春. 基于混合PSO-CS算法的彩色图像多阈值分割[J]. 计算机与现代化, 2017(8): 61-65.
WEI Hongchun. Multi-threshold segmentation of color images based on hybrid pso-cs algorithm [J]. Computer and Modernization, 2017(8): 61-65.
[15] 尹晓叶, 李俊吉. 基于增强布谷鸟搜索的图像分割算法[J]. 控制工程, 2017, 24(10): 2118-2124.
YIN Xiaoye, LI Junji. Image segmentation algorithm based on enhanced cuckoo search [J]. Control Engineering of China, 2017, 24(10): 2118-2124.
[16] Otsu N . A Threshold Selection Method from Gray-Level Histograms[J]. IEEE Transactions on Systems Man & Cybernetics, 2007, 9(1): 62-66.
[17]? Mirjalili S. Moth-Flame Optimization Algorithm: A Novel Nature- Inspired Heuristic Paradigm[J]. Knowledge Based Systems, 2015, 89(11): 228-249.
[18] HE L, HUANG S. Improved Glowworm Swarm Optimization Algorithm for Multilevel Color Image Thresholding Problem[J]. Mathematical Problems in Engineering, 2016, 2016: 1-24.

相似文献/References:

[1]郭水旺,王宝红,季钢,等.基于基因表达式编码算法的红外图像轮廓提取[J].红外技术,2013,35(01):038.
 GUO Shui-wang,WANG Bao-hong,JI Gang,et al. Infrared Image Contour Extraction Based on the Gene Expression Coding Algorithm[J].Infrared Technology,2013,35(9):038.
[2]孙爱平,皮冬明,安长亮,等. 光机装校阶段红外与可见光图像配准技术研究[J].红外技术,2013,35(01):050.
 SUN Ai-ping,PI Dong-ming,AN Chang-liang,et al. Study on IR/Visible Image Registration for Lens Assembly[J].Infrared Technology,2013,35(9):050.
[3]路建方,王新赛,肖志洋,等. 基于FPGA的红外图像自适应分段线性增强算法[J].红外技术,2013,35(02):102.
 LU Jian-fang,WANG Xin-sai,XIAO Zhi-yang,et al. An Adaptive Piecewise Linear Enhance Algorithm for Infrared Image Based on FPGA[J].Infrared Technology,2013,35(9):102.
[4]徐铭蔚,李郁峰,陈念年,等.多尺度融合与非线性颜色传递的微光与红外图像染色[J].红外技术,2012,34(12):722.
 XU Ming-wei,LI Yu-feng,CHEN Nian-nian,et al. Coloration of the Low Light Level and Infrared Image Using Multi-scale Fusion and Nonlinear Color Transfer Technique[J].Infrared Technology,2012,34(9):722.
[5]纪利娥,杨风暴,王志社,等. 基于边缘图像和SURF特征的可见光与红外图像的匹配算法[J].红外技术,2012,34(11):629.
 JI Li-e,YANG Feng-bao,WANG Zhi-she,et al.Visible and Infrared Image Matching Algorithm Based on Edge Image and SURF Features[J].Infrared Technology,2012,34(9):629.
[6]张红辉,罗海波,余新荣,等. 改进的神经网络红外图像非均匀性校正方法[J].红外技术,2013,35(04):232.
[7]张强,侯宁,刘红燕. 红外焦平面阵列非均匀性多点实时压缩校正研究[J].红外技术,2012,34(10):593.
 ZHANG Qiang,HOU Ning,LIU Hong-yan. Study on Real-time Multi-points Compressive Nonuniformity Correction of IRFPA[J].Infrared Technology,2012,34(9):593.
[8]路建方,王新赛,肖志洋,等. 基于灰度分层的FPGA红外图像伪彩色实时化研究[J].红外技术,2013,35(05):285.
 LU Jian-fang,WANG Xin-sai,XIAO Zhi-yang,et al. The Research on Real-time Pseudo-color of Infrared Image in FPGA Based on Gray Delaminating[J].Infrared Technology,2013,35(9):285.
[9]陈钱.红外图像处理技术现状及发展趋势[J].红外技术,2013,35(06):311.
 CHEN Qian.The Status and Development Trend of Infrared Image Processing Technology[J].Infrared Technology,2013,35(9):311.
[10]谭东杰,张安.基于局部直方图规定化的红外图像非均匀性校正[J].红外技术,2013,35(06):325.
 TAN Dong-jie,ZHANG An.Non-uniformity Correction Based on Local Histogram Specification[J].Infrared Technology,2013,35(9):325.

备注/Memo

备注/Memo:
收稿日期:2019-06-08;修订日期:2020-06-06.
作者简介:李唐兵(1983-),男,高级工程师,研究方向电力设备故障诊断。E-mail: 63463723@qq.com
基金项目:国网江西省电力公司科技项目(52182016001S)。

更新日期/Last Update: 2020-09-18