[1]孙祥乐,高思伟,毛 渲,等.用EBIC法观察InSb半导体器件中的p-n结[J].红外技术,2019,41(8):742-749.[doi:10.11846/j.issn.1001_8891.201908009]
 SUN Xiangle,GAO Siwei,MAO Xuan,et al.Applications of Electron Beam-induced Current at p-n Junction in InSb Devices[J].Infrared Technology,2019,41(8):742-749.[doi:10.11846/j.issn.1001_8891.201908009]
点击复制

用EBIC法观察InSb半导体器件中的p-n结
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
41卷
期数:
2019年第8期
页码:
742-749
栏目:
出版日期:
2019-08-21

文章信息/Info

Title:
Applications of Electron Beam-induced Current at p-n Junction in InSb Devices
文章编号:
1001-8891(2019)08-0742-08
作者:
孙祥乐1高思伟2毛 渲2龚晓霞1余黎静1宋欣波1 柴圆媛1尚发兰1信思树1太云见1
 1. 昆明物理研究所,云南 昆明 650223;2. 浙江大学 硅材料国家重点实验室,浙江 杭州 310027
Author(s):
SUN Xiangle1GAO Siwei2MAO Xuan2GONG Xiaoxia1YU Lijing1SONG Xinbo1 CHAI Yuanyuan1SHANG Falan1XIN Sishu1TAI Yunjian1
1. Kunming Institute of Physics, Kunming 650223, China;
2. State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027, China
关键词:
电子束诱生电流肖特基结p-n结InSb半导体器件
Keywords:
electron beam induced current Schottky junction p-n junction InSb device
分类号:
TN219
DOI:
10.11846/j.issn.1001_8891.201908009
文献标志码:
A
摘要:
能够直观地“看到”半导体材料中制作的p-n结,对于半导体器件的设计和制造工艺很有意义,知道p-n结的厚度及其在样品中的位置,有利于设计器件的结构、保护膜的厚度、电极的尺寸等,也可以优化离子注入、表面处理、电路互联等工艺参数。本文用EBIC(电子束诱生电流)法观察了InSb半导体器件中的p-n结。同时观察到了器件中的肖特基结,其中肖特基结显示出明显的温度特性:温度降低,肖特基结响应区域扩大,温度降至80 K,Cr-InSb肖特基结响应区域可扩展至47 mm。用离子注入法在InSb材料中制成的p-n结其空间电荷区并不呈对称的空间分布,靠n区一侧的空间电荷区较薄,电荷密度较大,靠p区一侧的空间电荷区较厚,电荷密度相对较小。作为一种常用的观察分析工具,EBIC法在观察分析半导体器件结构方面有透视和显微等优点。
Abstract:
Being able to visually “see” a p-n junction in a semiconductor is advantageous to the design and fabrication of semiconductor devices. Electron beam-induced current (EBIC) was employed in this study to observe the p-n junction in InSb devices, and both Schottky and p-n junctions were observed through EBIC signal distribution. The Schottky junction response shows distinct temperature dependence: the response will extend with the temperature decrease. For a Cr-InSb device, the Schottky junction response extends to 47 mm at 80 K. The space charge region of the p-n junction fabricated using ion-beam injection in the InSb device has an asymmetrical spatial distribution. The aforementioned region on the n-type side is thinner and has larger charge density than that on the p-type side. As one of the most useful analytical methods, EBIC offers the advantage of a microscopic and perspective view for the observation and analysis of semiconductor devices.

参考文献/References:

[1] 杨德仁. 半导体材料测试与分析[M]. 北京: 科学出版社, 2010.
YANG Deren. A Test and Analysis on Semiconductor Materials[M]. Beijing: Science Press, 2010.
[2] CHEN Boliang, ZHANG Yueqing, FANG Xiaoming, et al. Determination of hole diffusion length in n-InSb at 80 K[J/OL]. Proceedings of SPIE, 2001, 4369: https://doi.org/10.1117/12.445309.
[3] FAN Dingxun, Neelu Kang, Sepideh Gorji Ghalamestani. Schottky barrier and contact resistance of InSb nanowire field-effect transistors[J]. Nanotechnology, 2016, 27: 275204.
[4] Hardingham C. A novel, non-destructive, technique using EBIC to determine diffusion length in GaAs solar cells[C]//Proc. of 25th PVSC, 1996: 231-234.
[5] Higuchi H, Tamura H. Measurement of the lifetime of minority carriers in semiconductors with a scanning electron microscope[J]. Japanese Journal of Applied Physics, 1965(4): 316-317.
[6] Berz F, Kuiken H K. Theory of life time measurements with the scanning electron microscope: steady state[J]. Solid-state Electronics, 1976, 19: 437-445.
[7] Donolato C, Kittler M. Depth profiling of the minority-carrier diffusion length in intrinsically gettered silicon by electron-beam-induced current[J]. Journal of Applied Physics, 1988, 63(5): 1569-1579.
[8] Cathodo luminescence at p-n junction in GaAs[J]. Journal of Applied Physics, 1965, 36(4): 1387-1389.
[9] Miyazaki E, Miyaji K. Enhancement of reverse current in semiconductor diodes by electron bombardment[J]. Japanese Journal of Applied Physics, 1965(2): 129-130.
[10] Dereniak E L, Boreman G D. Infrared Detectors and Systems[M]. Wiley Interscience Publication, 1996: 439-452.

备注/Memo

备注/Memo:
收稿日期:2019-05-27;修订日期:2019-07-06.
作者简介:孙祥乐(1961-),男,高级工程师,硕士,主要从事红外半导体器件研究。E-mail:13888778378@139.com。
通信作者:太云见(1974-),男,研究员,硕士,主要研究方向为红外半导体器件技术。
更新日期/Last Update: 2019-08-20