[1]王雯倩,万其进,陈奕云,等.典型场地有机污染物多环芳烃的红外光谱特征[J].红外技术,2019,41(10):982-988.[doi:doi:10.11846/j.issn.1001_8891.201910015]
 WANG Wenqian,WAN Qijin,CHEN Yiyun,et al.Infrared Spectra of Polycyclic Aromatic Hydrocarbons from Typical Sites[J].Infrared Technology,2019,41(10):982-988.[doi:doi:10.11846/j.issn.1001_8891.201910015]
点击复制

典型场地有机污染物多环芳烃的红外光谱特征
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
41卷
期数:
2019年第10期
页码:
982-988
栏目:
出版日期:
2019-10-21

文章信息/Info

Title:
Infrared Spectra of Polycyclic Aromatic Hydrocarbons from Typical Sites
文章编号:
1001-8891(2019)10-0982-07
作者:
王雯倩12万其进145陈奕云23王新智6陈 敏2余珮珩2万 远7
1. 武汉工程大学 化学与环境工程学院,湖北 武汉 430073;2. 武汉大学 资源与环境科学学院,湖北 武汉 430212;
3. 土壤与农业可持续发展国家重点实验室,江苏 南京 210008;4. 武汉工程大学 绿色化工过程教育部重点实验室,
湖北 武汉 430073;5. 湖北省新型反应器与绿色化学工艺重点实验室,湖北 武汉 430073;
6. 西安电子科技大学 微电子学院,陕西 西安710071;7. 湖北师范大学 城市与环境学院,湖北 黄石 435002
Author(s):
WANG Wenqian12WAN Qijin145CHEN Yiyun23WANG Xinzhi6CHEN Min2YU Peiheng2WAN Yuan7
1. College of Chemical and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China;
2. School of Resource and Environmental Science, Wuhan University, Wuhan 430212, China; 3. State Key Laboratory of Soil and Sustainable Agriculture, Nanjing 210008, China; 4. Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430073, China; 5. Hubei Key Lab of Novel Reactor & Green Chemical Technology, Wuhan 430073, China; 6. College of Microelectronics, Xidian University, Xi’an 710071, China; 7. College of Urban and Environmental Sciences, Hubei Normal University, Huangshi 435002, China
关键词:
量子化学从头算多环芳烃红外光谱特征典型场地污染
Keywords:
ab initio quantum chemistry PAHs infrared spectral characteristics site pollution
分类号:
TK229
DOI:
doi:10.11846/j.issn.1001_8891.201910015
文献标志码:
A
摘要:
采用量子化学从头算的方法计算了多环芳烃萘、苊烯的红外谱图,比较了理论计算与实验实测所得的萘、苊烯红外谱图结果。在此基础上,结合IR光谱解析方法对萘、苊烯的红外谱峰基团进行归属和认定。结合分子轨道理论以及π-π共轭效应理论,分析了多环芳烃萘与苊烯的吸光强度以及谱峰位移的差异。得出结论:①随着共轭体系的增大,多环芳烃苊烯的吸光强度相较于萘明显增大。②共轭效应的增强,使得苊烯苯环上的C=C伸缩振动频率向低频率处位移,而与苯环相连的C-C伸缩振动向高频率处位移。这一结论可进一步应用于红外光谱多环芳烃的鉴别,为典型场地有机污染物的在线监测设备研制提供理论基础。
Abstract:
The infrared spectra of polycyclic aromatic hydrocarbons, namely, naphthalene and acenaphthylene, were determined using the quantum chemical ab initio method. Then, the results of the theoretical and experimental measurements of naphthalene and acenaphthylene were compared. On this basis, combined with the infrared spectrum analysis method, the infrared peak groups of naphthalene and acenaphthylene were assigned and identified. Combined with the molecular orbital theory and π-π conjugation effect theory, the differences in the absorbance and peak shift of naphthalene and acenaphthylene were analyzed. The conclusions were as follows: ①With the increase in the conjugated system, the absorption intensity of terpenes was significantly higher than that of naphthalene. ②The enhancement of the conjugation effect caused the C=C stretching vibration frequency on the terpene benzene ring to shift to a low frequency and the C-C stretching vibration connected to the benzene ring to shift to a high frequency. This conclusion can be further applied to the identification of polycyclic aromatic hydrocarbons in the infrared spectrum, which can provide a theoretical basis for the development of online monitoring equipment for organic pollutants in typical sites.

参考文献/References:

[1] 韩婕. 环境中多环芳烃检测技术研究进展[J]. 绿色环保建材, 2018, 136(6): 69-70.
HAN Jie. Research progress in detection technology of polycyclic aromatic hydrocarbons in environment[J]. Green Building Materials, 2018, 136(6): 69-70.
[2] 邵一先. 郭庄泉岩溶水系统中多环芳烃的分布与归趋研究[D]. 北京: 中国地质大学, 2014.
SHAO Yixian. Distribution and Fate of Polycyclic Aromatic Hydrocarbons in Karst Water System of Guozhuangquan[D]. Beijing: China University of Geosciences, 2014.
[3] 胡艳. 石油开采区多环芳烃多介质环境行为及其生态风险研究[D]. 北京: 华北电力大学, 2013.
HU Yan. Environmental Behavior and Ecological Risk of Polycyclic Aromatic Hydrocarbons in Petroleum Exploration Areas[D]. Beijing: North China Electric Power University, 2013.
[4] ZHANG, Y F, MA Y, GAO Z X, et al. Predicting the cross-reactivities of polycyclic aromatic hydrocarbons in ELISA by regression and CoMFA methods[J]. Anal. Bioanal.Chem., 2010, 397: 1551-2557.
[5] Weisman W. Analysis of petroleum hydrocarbons in environmental media[M]. Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG) Series, 1998, 1: 1-98.
[6] Poster D L, Schantz M M, Sander L C, et al. Analysis of polycyclic aromatic hydrocarbons (PAHs) in environmental samples: a critical review of gas chromatographic(GC) methods[J]. Anal. Bioanal. Chem., 2006, 386: 859-88.
[7] Chuang J C, Van Emon J M, Chou Y L, et al. Comparison of immunoassay and gas chromatography-mass spectrometry for measure- ment of polycyclic aromatic hydrocarbons in contaminated soil[J]. Anal. Chim. Acta, 2003, 486: 31-39.
[8] Agency E . Framework for the Use of Rapid Measurement Techniques (RMT) in the Risk Management of Land Contamination[M]. Environment Agency, Bristol: 2009.
[9] Aske N, Kallevik H, Sjoblom J. Determination of saturate, aromatic, resin,and asphaltenic (SARA) components in crude oils by means of infrared and near-infrared spectroscopy[J]. Energ. Fuel., 2001, 15: 1304-1312.
[10] Mulas G, Falvo C, Cassam-Chenaï, Patrick, et al. Anharmonic vi- brational spectroscopy of polycyclic aromatic hydrocarbons (PAHs)[J]. The Journal of Chemical Physics, 2018, 149(14): 152-161.
[11] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Revision D.6[Z]. Gaussian Inc., Wallingford CT, 2013.

备注/Memo

备注/Memo:
收稿日期:2019-05-22;修订日期:2019-10-05.
作者简介:王雯倩(1994-),女,硕士研究生,主要从事场地污染、计算化学研究。E-mail:Wenqian@wit.edu.cn。
通信作者:陈奕云(1983-),男,博士,副教授,主要从事土壤信息科学研究。E-mail:chenyy@whu.edu.cn。
基金项目:国家重点研发计划项目(2018YFC1800901)。
更新日期/Last Update: 2019-10-23