[1]潘京生.像增强器的迭代性能及其评价标准[J].红外技术,2020,42(6):509-518.[doi:doi:10.11846/j.issn.1001_8891.202005001]
 PAN Jingsheng.Image Intensifier Upgraded Performance and Evaluation Standard[J].Infrared Technology,2020,42(6):509-518.[doi:doi:10.11846/j.issn.1001_8891.202005001]
点击复制

像增强器的迭代性能及其评价标准
分享到:

《红外技术》[ISSN:1001-8891/CN:CN 53-1053/TN]

卷:
42卷
期数:
2020年第6期
页码:
509-518
栏目:
出版日期:
2020-06-23

文章信息/Info

Title:
Image Intensifier Upgraded Performance and Evaluation Standard
文章编号:
1001-8891(2020)06-0509-10
作者:
潘京生12
1. 微光夜视技术重点实验室,陕西 西安 710065;2. 北方夜视技术股份有限公司,江苏 南京 211102
Author(s):
PAN Jingsheng12
1. Science and Technology on Low-Light-Level Night Vision Laboratory, Xi’an 710065, China;
2. North Night Vision Technology Corp. Ltd., Nanjing 211102, China
关键词:
夜视像增强器信噪比分辨力可靠性
Keywords:
night vision image intensifier signal to noise ratio resolution reliability
分类号:
TN223
DOI:
doi:10.11846/j.issn.1001_8891.202005001
文献标志码:
A
摘要:
超二代像增强器与三代像增强器长期保持着并行发展的态势,但迭代性能划定和命名之争也贯穿其发展历程。随着多碱光电阴极的光谱拓展取得实质性突破,同时无膜微通道板在一些GaAs光阴极像增强器中也成为可能,像增强器的“代”已彻底失去意义,可对各自所能达到的实际使用性能仍然缺乏一个全面准确的评判。通过回顾像增强器的发展历程及其标志性的迭代性能突破,和随之多次引发的迭代性能划定和命名之争,进一步说明标准规范在准确评价像增强器的迭代性能特征及其实际使用性能方面存在不足,同时,数字化可集成的夜视技术是未来的发展趋势,数字像增强相机也已成为像增强技术的一种新的产品形态,像增强器的标准更新及其性能参数与实际使用性能对应关系的研究已经显得很有必要。
Abstract:
The Gen 2 image intensifier is keeping a parallel technology development status with the Gen 3 image intensifier and the debate over the generation division and performance upgrade is also accompanying their development. Over time, as substantial breakthroughs for multi-alkali photocathode in the extended spectral range occur, as well as the development of filmless micro-channel plates(MCP) in some GaAs photocathodes image intensifiers, the term “Generation” for image intensifiers has arguably lost meaning. However, there is still lack of accurate comparison assessments for the filed performance that both generations have achieved. Though the existing military specification cannot fully reflect the upgraded image intensifier characteristic and its actual field performance, standards updates as well as investigations of the link between these characteristic parameters and the actual field performance are necessary.

参考文献/References:

[1] Bosch L A. Image intensifier tube performance is what matters[C]//Proc. of SPIE, 2000, 4128: 65-78.
[2] Bender E, Wood M, Hosek D, et al. Characterization of domestic and foreign image intensifier tubes[C]//Proc. SPIE, 2013, 8706: 870607.
[3] Eric Garris. The Gen 3 Advantages[EB/OL].[2018-12-11] https: //www.HARRIS.com/sites/default/files/the-gen-3-advantage-white-paperv3.pdf.
[4] Chrzanowsk K. Review of night vision technology[J]. Opto -Electron, 2013, 21(2): 153-181.
[5] Smith C. Detection of special operations forces using night vision devices[R]. ORNL/TM-2001/172, 2001: www.osti.gov/bridge/ product. biblio.jsp.
[6] Vastsia M, Stich U, Dunlap D. Night-Sky Radiant Sterance From 450 to 2000 Nanometers[R]. NTIS, 1972.
[7] Bradley A, Kaiser M, Evaluation of Visual Acuity with Gen III Night Vision Goggles. NASA Technical Memorandum108792[R]. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19940019501.pdf.
[8] Estera J, Saldana M. Gated power supply technologies for advanced image intensifiers[C]//Proc. SPIE, 2003, 4796: 60-70.
[9] Estrera J P, Ford C E, Giordana A, et al. High reliability GaAs image intensifier with unfilmed microchannel plate[C]//Proc. SPIE, 1999, 3749: 713-714.
[10] Estrera J, Bender E, Giordana A, et al. Long lifetime generation IV image intensifiers with unfilmed microchannel plate[C]//Proc. SPIE, 2000, 4128: 46-53.
[11] Smith A, Passmore K, Sillmon R. Transmission mode photo- cathodes covering the spectral range[C/OL]//New Developments in Photodetection 3rd Beaune Conference, 2002: https://www. researchgate.net/publication/284829644_Transmission_mode_photocathodes_covering_the_spectral_range.
[12] Floryan N, Devoe T, Peck T, New image intensifier family for military and homeland defense[C]//Proc. SPIE, 2003, 5071: 397-501.
[13] Sinor T W, Estera J P. An analysis of electron scattering in thin dielectric films used as ion barriers in generation III image tubes[C]//Proc. SPIE, 2003, 4796: 23-32.
[14] MIL-STD-3009. Lighting, Aircraft, Night Vision Imaging System (NVIS) Compatible: Superseding MIL-L-85762A[S/OL]. 2001: https://appliedavionics. com/pdf/ MIL- STD- 3009.pdf.
[15] Photonis Corp. XD-4/XR5/4G/4G+ Technical Informatio [EB/ OL]. [2019-02-06]. https://www.photonis.com/products/image-intensi- fier-tube-4g.
[16] Harris Corp. 18 mm Gen3 image intensifier Spec. Sheet [EB/OL]. [2019-02-11]. https://www.harris.com/solution/image-intensifier- tubes.
[17] MIL-STD-1858. Performance Parameters of Image Intensifier Assemblies[S/OL]. DOD, 1981, http://aunv.blackice. com.au/ userfiles/david-mx_10160_milspec_2009 _MX-10160-GS_ TUBE_ SPEC.pdf.
[18] Ortiz S, Otaduy D, Dorronsoro C. Optimum parameters in image intensifier MTF measurements[C]//Proc. of SPIE, 2004, 5612: 382-391.
[19] PS/09/JXQR/078,Performance Specification Image Intensifier Assembly. 18 mm Microchannel Wafer High Performance Tube MX-10160 GS[S]. http://aunv.blackice.com.au/userfiles/david- mx_10160_milspec_2009_MX-10160-GS_TUBE_SPEC.pdf.
[20] Laurent N, Lejard C, Deltel G, et al. Performance characterization of night vision equipment based on triangle orientation discrimination (TOD) methodology[C]//Proc. SPIE, 2013, 8706: 43-55.
[21] Zacher J, Brandwood T, Thomas P. Effects of image intensifier halo on perceived layout[C]//Proc. of SPIE, 2007, 6557: 65570U.

相似文献/References:

[1]郭晖,向世明,田民强. 微光夜视技术发展动态评述[J].红外技术,2013,35(02):063.
 GUO Hui,XIANG Shi-ming,TIAN Min-qiang. A Review of the Development of Low-light Night Vision Technology[J].Infrared Technology,2013,35(6):063.
[2]智强,延波,杨晔,等. 基于PLD器件的门控技术在微光像增强器中的应用[J].红外技术,2013,35(03):180.
 ZHI Qiang,YAN Bo,YANG Ye,et al. Application of Gating Technique Based on the PLD Devices in Low-light-level Image Intensifier[J].Infrared Technology,2013,35(6):180.
[3]冯刘,刘晖,张连东,等. 电子清刷对双MCP像增强器闪烁噪声的影响[J].红外技术,2013,35(05):295.
 FENG Liu,LIU Hui,ZHANG Lian-dong,et al. Influence of Electron Scrubbing on Flicker Noise of Double-MCP Image Intensifiers[J].Infrared Technology,2013,35(6):295.
[4]延波,智强,李军国,等. 基于自动门控电源的微光像增强器动态范围研究[J].红外技术,2013,35(05):300.
 YAN Bo,ZHI Qiang,LI Jun-guo,et al. Study of Image Intensifier Dynamic Range Based on Auto-gating Power Source[J].Infrared Technology,2013,35(6):300.
[5]李晓峰,石峰,冯刘.透射式GaAs光电阴极荧光谱特性研究[J].红外技术,2013,35(06):319.
 LI Xiao-feng,SHI Feng,FENG Liu.Study on Fluorescence of Transparent GaAs Cathode[J].Infrared Technology,2013,35(6):319.
[6]田金生.微光像传感器技术的最新进展[J].红外技术,2013,35(09):527.[doi:10.11846/j.issn.1001_8891.201309001]
 TIAN Jin-sheng.New Development of Low Light Level Imaging Sensor Technology[J].Infrared Technology,2013,35(6):527.[doi:10.11846/j.issn.1001_8891.201309001]
[7]田金生.微光像传感器技术的最新进展[J].红外技术,2013,35(09):527.[doi:10.11846/j.issn.1001_8891.201309001]
 TIAN Jin-sheng.New Development of Low Light Level Imaging Sensor Technology[J].Infrared Technology,2013,35(6):527.[doi:10.11846/j.issn.1001_8891.201309001]
[8]李晓峰,李 莉,邓华斌,等.光纤面板及光锥传像特性研究[J].红外技术,2014,36(8):617.[doi:10.11846/j.issn.1001_8891.201408003]
 LI Xiao-feng,LI Li,DENG Hua-bing,et al.Study on Light Transmission Characteristics of Fiber Optic Faceplate and Fiber Optic Taper [J].Infrared Technology,2014,36(6):617.[doi:10.11846/j.issn.1001_8891.201408003]
[9]王冰,赵威,柴国庆,等.强光对超二代像增强器图像的干扰研究[J].红外技术,2014,36(10):844.[doi:10.11846/j.issn.1001_8891.201410016]
 WANG Bing,ZHAO Wei,CHAI Guo-qing,et al.Research on Intense Light Disturbance to Super Gen Ⅱ+ LLL Image Intensifier[J].Infrared Technology,2014,36(6):844.[doi:10.11846/j.issn.1001_8891.201410016]
[10]潘京生,邵爱飞,孙建宁,等.微通道板的离子反馈对像增强器性能升级的影响分析及改进途径探究[J].红外技术,2015,37(四):327.[doi:10.11846/j.issn.1001_8891.201504013]
 PAN Jing-sheng,SHAO Ai-fei,SUN Jian-ning,et al.Influence Analysis of Ion Feedback of Microchannel Plate on Image Intensifiers Performance Upgrade and Its Improvement Approach Exploration[J].Infrared Technology,2015,37(6):327.[doi:10.11846/j.issn.1001_8891.201504013]

备注/Memo

备注/Memo:
收稿日期:2019-05-13;修订日期:2020-05-05.

作者简介:潘京生(1965-),博士,研高,从事微光成像器件及其应用的研究。E-mail:pjs@nvt.com.cn

更新日期/Last Update: 2020-06-22